首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   19篇
  国内免费   3篇
电工技术   4篇
综合类   2篇
化学工业   87篇
金属工艺   9篇
机械仪表   7篇
建筑科学   6篇
矿业工程   1篇
能源动力   14篇
轻工业   24篇
水利工程   2篇
石油天然气   1篇
无线电   40篇
一般工业技术   86篇
冶金工业   29篇
原子能技术   1篇
自动化技术   65篇
  2023年   5篇
  2022年   15篇
  2021年   16篇
  2020年   16篇
  2019年   21篇
  2018年   20篇
  2017年   16篇
  2016年   18篇
  2015年   15篇
  2014年   20篇
  2013年   26篇
  2012年   14篇
  2011年   20篇
  2010年   18篇
  2009年   20篇
  2008年   15篇
  2007年   11篇
  2006年   8篇
  2005年   12篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   11篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有378条查询结果,搜索用时 31 毫秒
61.
Shape memory alloys (SMAs) are a special class of metallic materials which respond with a considerable change in their properties to small changes in temperature or stress. The SMAs offer two interesting characteristics, viz., shape memory effect (SME) and superelasticity (SE), also called pseudoelasticity which make them attractive for applications in engineering and biomedical fields. Among the various SMAs, NiTi base alloys have been the most commercially exploited ones because of their superior SME and SE, mechanical properties, corrosion resistance and biocompatibility. Since the pioneering discovery of NiTi SMA in early 1960s, significant progress has been made in the processing and understanding of the behaviour of these alloys. In spite of these efforts, the NiTi SMAs continue to offer challenges to the scientists and engineers, and new findings are being made continuously. This paper provides an overview of the developments in NiTi SMAs.  相似文献   
62.
Energy harvesting is the process of attaining energy from the external sources and transforming it into usable electrical energy. An analytical model of piezoelectric energy harvester has been developed to determine the output voltage across an electrical circuit when it is forced to undergo a base excitation. This model gives an easy approach to design and investigate the behavior of piezoelectric material. Numerical simulations have been carried out to determine the effect of frequency and loading on a Lead zirconate titanate (PZT-5A) piezoelectric material. It has been observed that the output voltage from the harvester increases when loading increases whereas its resonance frequency decreases. The analytical results were found to be in good agreement with the experimental and numerical simulation results.  相似文献   
63.
Sintering operation in the production of Zn, Cd, and Pb by Waelz process produces a powdery waste containing mainly (about 70%) ZnO, CdO, and PbO. The waste may be referred to as Waelz sintering waste (WSW). The aim of this study is to develop a process for the separation and recovery of the metals from WSW with high purities. The process is based on the dissolution of the WSW in aqueous SO2 solution. The research reported here concentrated on the effect of some important operational parameters on dissolution process. The parameters investigated and their ranges were as follows: SO(2) gas flow rate (V); 38-590 ml/min, stirring speed (W); 100-1000 rpm, reaction temperature (T); 13-60 degrees C, reaction time (t); 1-16 min, and solid-liquid ratio (S/L); 0.1-0.5 g/ml. The results showed that the dissolution rate increased with increasing W, V, and S/L and decreasing T. The best dissolution conditions were found to be V=325 ml/min, W=600 rpm, t=6 min, T=21 degrees C, and S/L=0.1g/ml. Separation of Zn from Cd involved precipitation of ZnSO3 from a mixture solution. The best pH level for the precipitation was observed to be 6.  相似文献   
64.
All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coordinating diverse cellular functions such as cell division, morphology, migration, macromolecular stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3 by kinases attenuate cofilin’s actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics has been known for decades, recent research works are unveiling the profound impacts of cofilin dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques in Alzheimer’s disease. In Parkinson’s disease, cofilin activation by silencing its upstream kinases increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of cofilin-mediated actin dynamics and provides an overview of cofilin’s importance in CNS physiology and pathophysiology.  相似文献   
65.
城域网和接入网发展需要的低水峰单模光纤   总被引:1,自引:1,他引:0  
密集波分复用(DWDM)的出现扩大了长途传输网的容量,但是DWDM技术的复杂性和使用了昂贵的器件,限制了DWDM在城域网的应用.最新研制的光纤,其在整个宽工作带,包括在(1 380±3) nm上都具有低水峰.低水峰光纤与粗波分复用(CWDM)系统比用标准单模光纤(SMF)的同一系统所用的信道间隔宽33%.经过恶劣的环境试验证明,低水峰光纤具有稳定的抗氢气引起的衰减性能,可确保现场安装的低水峰光纤光缆长期可靠地工作.由于低水峰光纤具有优异的弯曲敏感性,使其与最近研制的宽带接入技术,即所谓的光纤到驻地(FTTP)完全相适应.  相似文献   
66.
拉丝环境湿度对高强度光纤动态疲劳的影响   总被引:1,自引:0,他引:1  
文章研究了高强度石英玻璃光纤的动态疲劳性能与拉丝环境相对湿度的函数关系。光纤是在采用石墨感应加热炉加热,并在控制温度、相对湿度和拉丝环境尘埃粒子数的条件下拉制的。所谓拉丝环境指的是从感应加热拉丝炉至涂覆点之间的空间。通常,人们采用两种不同的加载方式,即拉伸和两点弯曲来测量拉制的光纤的动态疲劳。业已发现,拉丝湿度对用张力法加载方式测得的光纤的动态疲劳起着决定性的影响。  相似文献   
67.
The demand for energy of modern society is constantly increasing. The desire for environmental-friendly alternative energy resources with the least dependency on fossil fuels is growing. Solar energy is an important technology for many reasons and is worthy of urgent attention. Indeed, it has experienced rapid growth over the last few years. It is expected to become truly main stream when the breakeven of high performance is achieved and its cost becomes comparable with other energy sources. Various approaches have been proposed to enhance the efficiency of solar cells. This paper reviews some current initiatives and critical issues on the efficiency improvement of solar cells from the material sciences and chemistry perspectives.  相似文献   
68.
Three marine sponges Halichondria glabrata, Cliono lobata, and Spirastrella pachyspira from the western coastal region of India were compared for their morphometry, biochemical, and elemental composition. One‐way analysis of variance was applied for spicule morphometry results. Length, width, and length:width ratio were calculated independently. The ratio of length:width varied from 35 to 42 among the grown samples, which remained in the range of 10–22 in young sample at the beginning of studies. However, no significant change was observed in spicule width compared to length. Elemental compositions of marine sponges were determined by field emission gun‐scanning electron microscope. Scanning electron microscopy data revealed that the spicules of all the three sponges were mostly composed of O (47–56%) and Si (30–40%), whereas Al (14.33%) was only detected in the spicules of C. lobata. Apart from these, K, Ni, Ca, Fe, Mg, Na, and S were additionally detected in all the three samples. Presence of heavy metals in the sponges was analyzed by inductively coupled plasma‐atomic emission spectroscopy. Results showed that iron was present in a large amount in samples, followed by zinc, lead, and copper. Microsc. Res. Tech. 77:296–304, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
69.
Corn starch was modified by propylation with different degree of substitution (DS). DS of four starch modifications were 0.61, 1.56, 2.27, and 2.51. Samples were characterized by FTIR, XRD, TG‐DTA, swelling power, solubility, water binding capacity, and light transmittance. Results of the systematic physico‐chemical characterization of the starch modification in comparison with the native starch have been documented in the article. Results showed that during propylation, the crystalline structure of starch got destroyed and surface of the starch was eroded. Propylated starch (DS 2.51) showed 85% weight loss at temperatures from 300 to 400°C, whereas the native starch underwent similar weight loss (83%) from 250 to 300°C. Swelling power and water binding capacity of native starch (DS 0.0) were 3.09 g/g and 89.8%, respectively. However, in propylated starch at low DS (DS 0.61), swelling power and water binding capacity increased to 10.55 g/g and 136.8% under same conditions. At high DS (DS 2.51), swelling power was similar to native starch at 65°C, whereas solubility and water binding capacity decreased to below that of native starch. Light transmittance of propylated starch with high DS (DS 2.51) increased dramatically compared with native starch. Propylation improved the hydrophobic transformation and thermal stability of starch at high DS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
70.
Photofermentative H2 production at higher rate is desired to make H2 viable as cheap energy carrier. The process is influenced by C/N composition, pH levels, temperature, light intensity etc. In this study, Rhodobacter sphaeroides strain O.U 001 was used in the annular photobioreactor with working volume 1 L, initial pH of 6.7 ± 0.2, inoculum age 36 h, inoculum volume 10% (v/v), 250 rpm stirring and light intensity of 15 ± 1.1 W m−2. The effect of parameters, i.e. variation in concentration of DL malic acid, L glutamic acid and temperature on the H2 production was noted using three factor three level full factorial designs. Surface and contour plots of the regression models revealed optimum H2 production rate of 7.97 mL H2 L−1 h−1 at 32 °C with 2.012 g L−1 DL malic acid and 0.297 g L−1 L glutamic acid, which showed an excellent correlation (99.36%) with experimental H2 production rate of 7.92 mL H2 L−1 h−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号