首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20935篇
  免费   832篇
  国内免费   318篇
电工技术   462篇
综合类   543篇
化学工业   3818篇
金属工艺   519篇
机械仪表   735篇
建筑科学   850篇
矿业工程   180篇
能源动力   560篇
轻工业   2110篇
水利工程   244篇
石油天然气   179篇
武器工业   27篇
无线电   2370篇
一般工业技术   2810篇
冶金工业   3681篇
原子能技术   169篇
自动化技术   2828篇
  2023年   113篇
  2022年   356篇
  2021年   473篇
  2020年   269篇
  2019年   335篇
  2018年   386篇
  2017年   370篇
  2016年   403篇
  2015年   353篇
  2014年   535篇
  2013年   1028篇
  2012年   798篇
  2011年   980篇
  2010年   754篇
  2009年   821篇
  2008年   808篇
  2007年   822篇
  2006年   714篇
  2005年   608篇
  2004年   680篇
  2003年   900篇
  2002年   1188篇
  2001年   1016篇
  2000年   588篇
  1999年   534篇
  1998年   1334篇
  1997年   858篇
  1996年   635篇
  1995年   426篇
  1994年   316篇
  1993年   349篇
  1992年   197篇
  1991年   152篇
  1990年   147篇
  1989年   133篇
  1988年   132篇
  1987年   110篇
  1986年   112篇
  1985年   150篇
  1984年   86篇
  1983年   91篇
  1982年   82篇
  1981年   102篇
  1980年   98篇
  1979年   61篇
  1978年   50篇
  1977年   100篇
  1976年   192篇
  1975年   51篇
  1973年   52篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Pal  Shaili  Kumar  Ajay  Kumar  Sunil  De  Arup Kumar  Prakash  Rajiv  Sinha  Indrajit 《Catalysis Letters》2022,152(11):3259-3271
Catalysis Letters - Magnetically recyclable visible light photocatalysts for the degradation of critical organic pollutants are an urgent industrial requirement. Nonetheless, one component...  相似文献   
992.
Muscle invasive bladder cancer (MIBC) is a widespread malignancy with a worse prognosis often related to a late diagnosis. For early-stage MIBC pts, a multidisciplinary approach is mandatory to evaluate the timing of neoadjuvant chemotherapy (NAC) and surgery. The current standard therapy is platinum-based NAC (MVAC-methotrexate, vinblastine, doxorubicin, and cisplatin or Platinum–Gemcitabine regimens) followed by radical cystectomy (RC) with lymphadenectomy. However, preliminary data from Vesper trial highlighted that dose-dense NAC MVAC is endowed with a good pathological response but shows low tolerability. In the last few years, translational-based research approaches have identified several candidate biomarkers of NAC esponsiveness, such as ERCC2, ERBB2, or DNA damage response (DDR) gene alterations. Moreover, the recent consensus MIBC molecular classification identified six molecular subtypes, characterized by different sensitivity to chemo- or targeted or immunotherapy, that could open a novel procedure for patient selection and also for neoadjuvant therapies. The Italian PURE-01 phase II Trial extended data on efficacy and resistance to Immune Checkpoint Inhibitors (ICIs) in this setting. In this review, we summarize the most relevant literature data supporting NAC use in MIBC, focusing on novel therapeutic strategies such as immunotherapy, considering the better patient stratification and selection emerging from novel molecular classification.  相似文献   
993.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.  相似文献   
994.
Thermal barrier coating materials with proper thermal expansion coefficient (TEC), low thermal conductivity, and good high-temperature stability are of great significance for their applications in next-generation turbine engines. Herein, we report a new class of high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x with different Ce4+ contents synthesized by a solid-state reaction method. They exhibit different crystal structures at different Ce4+ content, including a bixbyite single phase without Ce4+ doping (x = 0), bixbyite-fluorite dual-phase in the RE2O3-rich region (0 < x < 2), and fluorite single phase in the stoichiometric (x = 2) and CeO2-rich region (x > 2). The high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x exhibit tailorable TECs at a large range of 9.04 × 10–6–13.12 × 10–6 °C–1 and engineered low thermal conductivity of 1.79–2.63 W·m–1·K–1. They also possess good sintering resistance and high-temperature phase stability. These results reveal that the high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x are promising candidates for thermal barrier coating materials as well as thermally insulating materials and refractories.  相似文献   
995.
Pursuing novel thermal barrier–coating materials with lower thermal conductivity and high-temperature stability can simultaneously improve the working efficiency and service temperature of a gas turbine. In this study, a series of high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 (RE = La, Nd, Sm, Gd, Dy, and Er) oxides were prepared though solid-state reaction. Through tuning the rare-earth cations, an order–disorder transition occurs from certain partially ordered weberite structure (C2221) to disordered defective fluorite structure (Fm3¯ $\bar{3}$m). All the high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 oxides possess low thermal conductivity in the range of 0.91–1.34 W m−1 K−1 at room temperature, which can be attributed to increased lattice anharmonicity and disorder, resulting in additional phonon scattering. Herein, we proved that the incorporation of heterovalent cations at B-sites in high-entropy A2B2O7 crystals is an effective strategy to reduce the thermal conductivity without compromising the decrease of oxygen vacancy. Moreover, the high-entropy RE2(Y0.2Yb0.2Nb0.2Ta0.2Ce0.2)2O7 oxides show the relatively higher thermal expansion coefficients of 10.3–10.7 × 10−6°C−1 and excellent phase stability at elevated temperatures.  相似文献   
996.
In aquatic organisms, cadmium exposure occurs from ovum to death and the route of absorption is particularly wide, being represented by skin, gills and gastrointestinal tract, through which contaminated water and/or preys are ingested. It is known that cadmium interferes with the gut; however, less information is available on cadmium effects on an important component of the gut, namely goblet cells, specialized in mucus synthesis. In the present work, we studied the effects of two sublethal cadmium concentrations on the gut mucosa of Danio rerio. Particular attention was paid to changes in the distribution of glycan residues, and in metallothionein expression in intestinal cells. The results show that cadmium interferes with gut mucosa and goblet cells features. The effects are dose- and site-dependent, the anterior gut being more markedly affected than the midgut. Cadmium modifies the presence and/or distribution of glycans in the brush border and cytoplasm of enterocytes and in the goblet cells’ cytoplasm and alters the metallothionein expression and localization. The results suggest a significant interference of cadmium with mucosal efficiency, representing a health risk for the organism in direct contact with contamination and indirectly for the trophic chain.  相似文献   
997.
Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.  相似文献   
998.
High‐dimensional and time‐dependent data pose significant challenges to Statistical Process Monitoring. Most of the high‐dimensional methodologies to cope with these challenges rely on some form of Principal Component Analysis (PCA) model, usually classified as nonadaptive and adaptive. Nonadaptive methods include the static PCA approach and Dynamic Principal Component Analysis (DPCA) for data with autocorrelation. Methods, such as DPCA with Decorrelated Residuals, extend DPCA to further reduce the effects of autocorrelation and cross‐correlation on the monitoring statistics. Recursive Principal Component Analysis and Moving Window Principal Component Analysis, developed for nonstationary data, are adaptive. These fundamental methods will be systematically compared on high‐dimensional, time‐dependent processes (including the Tennessee Eastman benchmark process) to provide practitioners with guidelines for appropriate monitoring strategies and a sense of how they can be expected to perform. The selection of parameter values for the different methods is also discussed. Finally, the relevant challenges of modeling time‐dependent data are discussed, and areas of possible further research are highlighted. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1478–1493, 2016  相似文献   
999.
For propene epoxidation with H2 and O2, the catalytic performance of Au/TS‐1 catalyst is extremely sensitive to preparation parameters of deposition‐precipitation (DP) method. In this work, effect of charging sequence in DP process on catalyst structure and catalytic performance of Au/TS‐1 catalyst is first investigated. For different charging sequences, the compositions of Au complexes (e.g., [AuCl(OH)3]?) and pore property of TS‐1 (i.e., with or without H2O prefilling micropores) could affect the transfer of Au complexes into the micropores, resulting in different Au locations and thus significantly different catalytic performance. Notably, when TS‐1 is first filled with H2O and then mixed with Au complexes, the reduced Au/TS‐1 catalyst could expose Au nanoparticles on the external surface of TS‐1 and show high stability. The results provide direct evidence showing that micropore blocking is the deactivation mechanism. Based on the results, a simple strategy to design highly stable Au/Ti‐based catalysts is developed. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3963–3972, 2016  相似文献   
1000.
We present results on the Forcespinning® (FS) of Polyacrylonitrile (PAN) for mass production of polymer nanofiber membranes as separators for Lithium‐ion batteries (LIBs). Our results presented here show that uniform, highly fibrous mats from PAN produced using Forcespinning®, exhibit improved electrochemical properties such as electrolyte uptake, low interfacial resistance, high oxidation limit, high ionic conductivity, and good cycling performance when used in lithium ion batteries compared to commercial PP separator materials. This article introduces ForceSpinning®, a cost effective technique capable of mass producing high quality fibrous mats, which is completely different technology than the commonly used in‐house centrifugal method. This Forcespinning® technology is thus the beginning of the nano/micro fiber revolution in large scale production for battery separator application. This is the first time to report results on the cycle performance of LIB‐based polymer nanofiber separators made by Forcespinning® technology. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42847.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号