首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   1篇
电工技术   7篇
综合类   1篇
化学工业   118篇
金属工艺   6篇
机械仪表   11篇
建筑科学   10篇
能源动力   29篇
轻工业   26篇
水利工程   5篇
无线电   26篇
一般工业技术   108篇
冶金工业   8篇
原子能技术   3篇
自动化技术   61篇
  2024年   8篇
  2023年   12篇
  2022年   20篇
  2021年   17篇
  2020年   21篇
  2019年   9篇
  2018年   26篇
  2017年   26篇
  2016年   30篇
  2015年   13篇
  2014年   13篇
  2013年   37篇
  2012年   27篇
  2011年   47篇
  2010年   11篇
  2009年   16篇
  2008年   19篇
  2007年   7篇
  2006年   11篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2000年   7篇
  1997年   1篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
21.
In this paper, an algorithm to solve the profit based unit commitment problem (PBUCP) under deregulated environment has been proposed using Particle Swarm Optimization (PSO) intelligent technique to maximize the GENCOs profit. Deregulation in power sector increases the efficiency of electricity production and distribution, offer lower prices, higher quality, a secure and a more reliable product. The proposed algorithm has been developed from the view point of a generation company wishing to maximize its profit in the deregulated power and reserve markets. UC schedule depends on the market price in the deregulated market. In deregulated environment utilities are not required to meet the demand. GENCO can consider a schedule that produce less than the predicted load demand and reserve but creates maximum profit. More number of units are committed when the market price is higher. When more number of generating units are brought online more power is generated and participated in the deregulated market to get maximum profit. This paper presents a new approach of GENCOs profit based unit commitment using PSO technique in a day ahead competitive electricity markets. The profit based unit commitment problem is solved using various PSO techniques such as Chaotic PSO (CPSO), New PSO (NPSO) and Dispersed PSO (DPSO) and the results are compared. Generation, spinning reserve, non-spinning reserve, and system constraints are considered in proposed formulation. The proposed approach has been tested on IEEE-30 bus system with 6 generating units as an individual GENCO. The results obtained are quite encouraging and useful in deregulated market. The algorithm and simulation are carried out using Matlab software.  相似文献   
22.
Organ blood flow is controlled, in part, by changes in diameter of resistance vessels. In thick tissue, vessels can be imaged with a microscope using contrast-enhancing methods (e.g., fluorescence) and image analysis techniques can be used for quantitative diameter estimations. However, a change in the position of a vessel with respect to the plane of focus can be misinterpreted as a diameter change. In order to address this problem, a 3D image in a light microscope is obtained by serial optical sectioning, and a 3D deconvolution procedure (Avinash et al., 1991, "Fourteenth Association for Research in Otolaryngology Midwinter Meeting, St. Petersberg, FL," Abstract 156) is used to deblur 3D image data. Deblurred sections are computationally projected onto a 2D plane to give an extended-focus image, from which diameter estimates of microvessels are made using a quantitative, 2D diameter-tracking algorithm (Miles, 1987, "Semiautomatic Quantitative Image Analysis of Dynamic in Vivo Cochlear Microvessel Diameters." Ph.D. dissertation, Univ. Michigan; Miles and Nuttall, 1992, IEEE Trans. Biomed. Eng.). Justification for 3D preprocessing before diameter analysis is provided by absolute and relative error analyses using computer-generated synthetic vessels. The 3D diameter analysis technique is validated using a capillary tube of known diameter, filled with fluorescent solution. Demonstration of its applicability is shown in diameter measurements from the vessels of guinea pig cochlea. Our approach, using extended-focus images, minimizes overestimation of microvascular diameters and underestimation of relative diameter changes. Therefore, unambiguous diameter measurements are possible with extended-focus images.  相似文献   
23.
This paper presents a feasibility study of 60 GHz indoor WLANs. We evaluate 60 GHz performance in a typical academic office building under the primary assumption that 60 GHz WLAN APs and clients will be equipped with relatively wide-beam antennas to cope with client mobility. In contrast to previous works which measured performance at a single layer using custom, non-standard compliant hardware, we investigate performance across multiple layers using primarily 802.11ad-compliant wide-beam COTS devices. Our study shows that the large number of reflective surfaces in typical indoor WLAN environments combined with wider beams makes performance highly unpredictable and invalidates several assumptions that hold true in static, narrow-beam, Line-Of-Sight scenarios. Additionally, we present the first measurements, to our best knowledge, of power consumption of an 802.11ad NIC and examine the impact of a number of factors on power consumption.  相似文献   
24.
Since the days of Digital Subscriber Links (DSL), time domain equalizers (TEQ's) have been used to combat time dispersive channels in Multicarrier Systems. In this paper, we propose computationally inexpensive techniques to recompute TEQ weights in the presence of changes in the channel, especially over fast fading channels. The techniques use no extra information except the perturbation to the channel itself, and provide excellent approximations to the new TEQ weights. Adaptation methods for two existing Channel shortening algorithms are proposed and their performance over randomly varying, randomly perturbed channels is studied. The proposed adaptation techniques are shown to perform admirably well for small changes in channels for OFDM systems.  相似文献   
25.
In this paper a new configuration for a computerized tomographic (CT) scanner is presented. The machine is essentially a hybrid combination of second- and third-generation scanners. A single source of X-rays and an array of detectors are mounted on a gantry. The source/detector array grouping traverses the object while the gantry continuously rotates around the object. Conditions will be derived so that the projection data will completely cover the Radon space without any holes or partial overlaps, thus ensuring the existence of efficiently implementable reconstruction algorithms for inverting the data. We will also present a new convolution-backprojection algorithm for reconstructing tomographic images from data generated on such a scanner.  相似文献   
26.
Synthesis and structural studies of nanocrystalline silicon grown in pulsed laser deposited SiOX films is reported. The effect of high energy heavy ion beam irradiation on these films is studied using 100 MeV Ag ions. The structural studies were carried out using micro Raman spectroscopy, GAXRD, FTIR, TEM, HRTEM, SAED and EDX. The occurrence of phase separation in non-stoichiometric silicon oxide by means of ion beam irradiation leading to the formation of silicon nanocrystals in the films is confirmed by the results. HRTEM results reveal the structure of silicon phase formed after ion beam treatment and the particle size can be controlled up to 2-3 nm. A detailed analysis by micro Raman and HRTEM studies suggest the presence of crystallite size distribution. The results of GAXRD and SAED confirm the formation of cubic phase of silicon with two different lattice parameters. The studies conclude that the size of the nanocrystals can be controlled by varying deposition and ion irradiation parameters.  相似文献   
27.
The present work deals with the study of heat transfer enhancement using water based CuO nanofluids in the helical coil heat exchanger. Nanofluids were prepared using two-step method by using wet chemical method. Nanofluids with various volume percentage between 0 and 0.5 of CuO nanoparticles and their flow rate between 30 and 80 LPH (Reynolds number ranging from 812 to 1895, Laminar flow regime) were considered in the present study. The setup consists of a test section (helical coil), cooler, reservoir, pump, flow meter, thermocouples and flow controlling system. The temperature measurements were carried out with the help of thermocouples. The investigation was carried out to study the effect of particle loading and flow rate on heat transfer coefficient and Nusselt number. It has been found that the increase in the loading of CuO nanoparticles in base fluid shows a significant enhancement in the heat transfer coefficient of nanofluid. In the present study, at 0.1 vol% concentration of CuO nanoparticles in nanofluid, enhancement in heat transfer coefficient was 37.3% as compared to base fluid while at 0.5 vol%, it is as high as 77.7%. Also with the increase in the flow rate of the CuO nanofluid, significant increase in heat transfer coefficient was observed.  相似文献   
28.
Molecular dynamics (MD) simulations are used to investigate the role of size and distribution of nanoscale Cu/Ta interfaces on the nucleation and evolution of defects during shock loading and spall failure of nanocrystalline (nc) Cu/Ta alloys. Cu/Ta interfaces are introduced through the embedding of Ta clusters in nc-Cu matrix. The phase stability of the embedded Ta clusters either as FCC or BCC clusters is first investigated and reveals that the FCC Ta clusters have a lower energy for diameters less than 4 nm, whereas the BCC Ta clusters have a lower energy for the larger diameters. The shock simulations are then carried out for Ta clusters with an average diameter of 1 and 3 nm and concentrations of 3.0, 6.3 and 10.0% to investigate the role of size and distribution of Cu/Ta interfaces (due to presence of clusters) on the nucleation and evolution of dislocations as well as the spall strength of the alloy. The MD simulations indicate that the Cu/Ta interfaces reduce the capability of nc-Cu to accommodate plasticity through nucleation of dislocations and create void nucleation sites during spallation. The MD simulations further reveal that the impact strengthening effects due to the presence of nanoscale Cu/Ta interfaces are strongly dependent upon the size and distribution of Ta clusters, as well as the grain size of Cu matrix. Smaller size of interfaces (cluster size), higher concentration of Ta (smaller spacing between interfaces) and larger matrix grain size render higher spall strengths of nc-Cu/Ta microstructures.  相似文献   
29.
Fracture toughness and tear strength of hydroxyapatite (HAP)-filled poly(ε-caprolactone) (PCL) with increasing HAP concentration were studied. The toughness was assessed in terms of essential work of fracture (EWF). Adhesive strength between HAP and PCL interfaces was evaluated using T-peel testing. The adhesion between the two components was found to be relatively strong. Double edge notched tension (DENT) and trousers test specimens were used for the EWF tests. The effect of HAP phase in PCL on the fracture and tearing toughness was investigated. The results obtained from the EWF tests for the HAP-filled PCL complied with the validity criteria of the EWF concept, namely, (1) geometric similarity for all ligament lengths; (2) fully yielded ligament and (3) plane-stress fracture condition. Values for specific essential work of fracture (w e ) and specific plastic work of fracture (βw p ) were found to decrease with increase in HAP concentration. The testing procedure showed promise in quantifying the tearing resistance and rising R-curve behavior common in natural materials and it can be extended to other biomaterials that exhibit post-yield deformation. A quantitative assessment based on fracture mechanics of the adhesive strength between the bioactive interfaces plays an important role for continued development of tissue replacement and tissue regeneration materials.  相似文献   
30.
Here we report fabrication and evaluation of novel surface modified polymer–lipid hybrid nanoparticles (PLN) as robust carriers for intranasal delivery of ropinirole hydrochloride (ROPI HCl). Sustained release, avoidance of hepatic first pass metabolism, and improved therapeutic efficacy are the major objectives of this experiment. PLN were fabricated by emulsification-solvent diffusion technique and evaluated for physicochemical parameters, in vitro mucoadhesion, in vitro diffusion, ex vivo permeation, mucosal toxicity and stability studies. Box-Behnken experimental design approach has been employed to assess the influence of two independent variables, viz. surfactant (Pluronic F-68) and charge modifier (stearylamine) concentration on particle size, ζ-potential and entrapment efficiency of prepared PLN. Numerical optimization techniques were used for selecting optimized formulation sample, further confirmed by three dimensional response surface plots and regression equations. Results of ANOVA demonstrated the significance of suggested models. DSC and SEM analysis revealed the encapsulation of amorphous form of drug into PLN system, and spherical shape. PLN formulation had shown good retention with no severe signs of damage on integrity of nasal mucosa. Release pattern of drug-loaded sample was best fitted to zero order kinetic model with non-Fickian super case II diffusion mechanism. In vivo pharmacodynamic studies were executed to compare therapeutic efficacy of prepared nasal PLN formulation against marketed oral formulation of same drug. In summary, the PLN could be potentially used as safe and stable carrier for intranasal delivery of ROPI HCl, especially in treatment of Parkinson’s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号