首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   25篇
  国内免费   3篇
电工技术   5篇
综合类   1篇
化学工业   128篇
金属工艺   8篇
机械仪表   3篇
建筑科学   15篇
能源动力   19篇
轻工业   24篇
水利工程   5篇
石油天然气   1篇
无线电   53篇
一般工业技术   80篇
冶金工业   28篇
原子能技术   2篇
自动化技术   52篇
  2024年   2篇
  2023年   15篇
  2022年   29篇
  2021年   30篇
  2020年   25篇
  2019年   15篇
  2018年   20篇
  2017年   21篇
  2016年   23篇
  2015年   15篇
  2014年   21篇
  2013年   29篇
  2012年   20篇
  2011年   32篇
  2010年   13篇
  2009年   8篇
  2008年   21篇
  2007年   13篇
  2006年   20篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有424条查询结果,搜索用时 0 毫秒
21.
22.
Theoretical investigation on the performance of lithium chloride (LiCl) absorption cooling system using an artificial neural network (ANN) model is presented. Tabulated data from the literature are used to construct the ANN model. Solar collector desiccant/regenerator is applied to re-concentrate the working solution. Using the proposed model, the effect of system design parameters; namely regenerator length, and air flow rate on the performance of the system is demonstrated. The variation of the thermo-physical parameters along the regenerator length is highlighted.  相似文献   
23.
24.
This paper investigates the viability of using starch (ST) as a new modifier for asphalt paving materials. Different ratios of ST (2.5, 5.0, and 7.5% by weight of asphalt) were blended with 70/100 paving grade asphalt. Unmodified and modified asphalt binders were subjected to physicochemical, alkali, acid and fuel resistance tests. The performance tests including, Marshall stability, Marshall Quotient (MQ), tensile strength, tensile strength ratio, flexural strength, rutting resistance and resilient modulus (MR) were carried out on unmodified and modified stone matrix asphalt (SMA) mixtures. The analyses of test results show that the performance of ST-modified asphalt mixtures are better than conventional and styrene–butadiene–styrene (SBS)-modified mixtures. The rutting potential, moisture susceptibility and temperature susceptibility can be reduced by the inclusion of ST in the asphalt mixture. The laboratory MR values are lower than the calculated ones using the empirical equations. The results also revealed that this modifier can be used as anti-stripping agent. It also shows resistance to fuels and most common chemicals. A ST content of 5% by weight of asphalt is recommended for the improvement of the performance of asphalt concrete mixtures similar to that investigated in this study.  相似文献   
25.
A High Speed, Low Voltage CMOS Offset Comparator   总被引:3,自引:0,他引:3  
A high speed, low voltage offset comparator is presented. No common mode tracking circuit is used and the offset is added without compromising the high input impedance nature of the circuit. The circuit operates at 480 Mbps with 3.0–3.6 V and 1.6–2.0 V supplies and –40 to 125°C temperature range on a typical 0.5 m technology.  相似文献   
26.
With the rapid development of the mobile internet and the internet of things (IoT), the fifth generation (5G) mobile communication system is seeing explosive growth in data traffic. In addition, low-frequency spectrum resources are becoming increasingly scarce and there is now an urgent need to switch to higher frequency bands. Millimeter wave (mmWave) technology has several outstanding features—it is one of the most well-known 5G technologies and has the capacity to fulfil many of the requirements of future wireless networks. Importantly, it has an abundant resource spectrum, which can significantly increase the communication rate of a mobile communication system. As such, it is now considered a key technology for future mobile communications. MmWave communication technology also has a more open network architecture; it can deliver varied services and be applied in many scenarios. By contrast, traditional, all-digital precoding systems have the drawbacks of high computational complexity and higher power consumption. This paper examines the implementation of a new hybrid precoding system that significantly reduces both calculational complexity and energy consumption. The primary idea is to generate several sub-channels with equal gain by dividing the channel by the geometric mean decomposition (GMD). In this process, the objective function of the spectral efficiency is derived, then the basic tracking principle and least square (LS) techniques are deployed to design the proposed hybrid precoding. Simulation results show that the proposed algorithm significantly improves system performance and reduces computational complexity by more than 45% compared to traditional algorithms.  相似文献   
27.
This paper presents the modeling and simulation of solar-powered desiccant regenerator used for open absorption cooling cycles. The input heat, which is the total radiation incident on an inclined surface, is evaluated via a solar radiation model in terms of the location, day of the year, and time of the day. Calcium Chloride (CaCl2) is applied as the working desiccant in this investigation. The solar radiation model is integrated with the desiccant regenerator model to produce a more realistic simulation. A finite difference method is used to simulate the combined heat and mass transfer processes that occur in the liquid desiccant regenerator. The system of equations is solved using the Matlab-Simulink platform. The effect of the important parameters, namely the regenerator length, desiccant solution flow rate and concentration, and air flow rate, on the performance of the system is investigated. It has been found that the vapor pressure difference has a maximum value for a given regenerator length. It is also shown that for specified operating conditions, a maximum value of the coefficient of performance occurs at a given range of air and solution flow rates. Therefore, it is essential to select the design parameters for each ambient condition to maximize the coefficient of performance of the system.  相似文献   
28.
A one‐step method was used to prepare stable aqueous nanocomposite dispersions based on cellulose whiskers extracted from the rachis of the date palm tree and a poly(styrene‐co‐2‐ethyl hexylacrylate) copolymer via miniemulsion polymerization. A reactive silane, i.e., methacryloxypropyl triethoxysilane was added to stabilize the dispersion and favor the anchoring of the whiskers on polymer particles. Dynamic light scattering was used to study the effect of the silane and whiskers contents on the average particle size of the polymer. Nanocomposites materials were prepared from these dispersions using a casting/evaporation method. The effect of the silane and whiskers contents on the thermal and mechanical properties were studied using differential scanning calorimetry and dynamic mechanical analysis. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   
29.
Stabilized and dispersed superparamagnetic porous nanogels based on sodium acrylate (AA‐Na) and acrylamide (AM) in a surfactant‐free aqueous system were synthesized via solution polymerization at room temperature. The formation of magnetite nanoparticles was confirmed and their properties characterized using Fourier transform infrared spectroscopy. Extensive characterization of the magnetic polymer particles using transmission electron microscopy (TEM), dynamic light scattering and zeta potential measurements revealed that Fe3O4 nanoparticles were incorporated into the shells of poly(AM/AA‐Na). The average particle size was 5–8 nm as determined from TEM. AM/AA‐Na nanoparticles with a diameter of about 11 nm were effectively assembled onto the negatively charged surface of the as‐synthesized Fe3O4 nanoparticles via electrostatic interaction. Crosslinked magnetite nanocomposites were prepared by in situ development of surface‐modified magnetite nanoparticles in an AM/AA‐Na hydrogel. Scanning electron microscopy was used to study the surface morphology of the prepared composites. The morphology, phase composition and crystallinity of the prepared nanocomposites were characterized. Atomic force microscopy and argon adsorption–desorption measurements of Fe3O4.AM/AA indicated that the architecture of the polymer network can be a hollow porous sphere or a solid phase, depending on the AA‐Na content. © 2013 Society of Chemical Industry  相似文献   
30.
Neurons are extremely vulnerable cells that tightly rely on the brain’s highly dynamic and complex vascular network that assures an accurate and adequate distribution of nutrients and oxygen. The neurovascular unit (NVU) couples neuronal activity to vascular function, controls brain homeostasis, and maintains an optimal brain microenvironment adequate for neuronal survival by adjusting blood-brain barrier (BBB) parameters based on brain needs. The NVU is a heterogeneous structure constituted by different cell types that includes pericytes. Pericytes are localized at the abluminal side of brain microvessels and contribute to NVU function. Pericytes play essential roles in the development and maturation of the neurovascular system during embryogenesis and stability during adulthood. Initially, pericytes were described as contractile cells involved in controlling neurovascular tone. However, recent reports have shown that pericytes dynamically respond to stress induced by injury upon brain diseases, by chemically and physically communicating with neighboring cells, by their immune properties and by their potential pluripotent nature within the neurovascular niche. As such, in this paper, we would like to review the role of pericytes in NVU remodeling, and their potential as targets for NVU repair strategies and consequently neuroprotection in two pathophysiologically distinct brain disorders: ischemic stroke and Alzheimer’s disease (AD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号