首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   27篇
化学工业   102篇
金属工艺   5篇
机械仪表   6篇
建筑科学   13篇
矿业工程   2篇
能源动力   15篇
轻工业   50篇
水利工程   1篇
石油天然气   2篇
无线电   8篇
一般工业技术   31篇
冶金工业   10篇
自动化技术   38篇
  2024年   4篇
  2023年   6篇
  2022年   12篇
  2021年   13篇
  2020年   7篇
  2019年   15篇
  2018年   18篇
  2017年   15篇
  2016年   9篇
  2015年   11篇
  2014年   21篇
  2013年   25篇
  2012年   24篇
  2011年   17篇
  2010年   11篇
  2009年   22篇
  2008年   14篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有283条查询结果,搜索用时 0 毫秒
281.
Smart packaging relies on the one-to-one interaction of food with its packaging or its environment to monitor food quality and safety. Colorimetric pH indicators (synthetic, natural) working in a smart food packaging system are particularly striking when used with fresh foodstuffs such as fish and meat that perish quickly and require real-time freshness monitoring. In this study, curcumin (Cur) was used as a natural pH indicator to produce sustainable smart packaging material. Towards this objective, low-density polyethylene (LDPE) and thermoplastic starch (TPS) blend-based films containing Cur were prepared using a twin screw extrusion and hot-pressing processes. Besides, two different compositions of LDPE/TPS mixture (50/50 and 70/30) were used as the matrix. Thermal, mechanical, morphological properties, an affinity for water, and color change properties of LDPE/TPS/Cur films were investigated. They showed a significant color change from yellow to brown at pH: 10 at the end of the seventh day, especially in the 50 LDPE/50 TPS mixture. 50 LDPE/50 TPS mixture with 7% curcumin content gave the highest tensile strength of 8.03 Mpa. When the same mixture was used to monitor chicken meat spoilage at 25°C, meat samples have shown color changes from light yellow to light brown due to the increased content of total volatile basic amines. As a result, it has been suggested that 50 LDPE/50 TPS mixture containing 7% Cur can be used as a smart packaging material.  相似文献   
282.
Due to its ferroelectricity, hafnium oxide has attracted a lot of attention for ferroelectric memory devices. Amongst different dopant elements, zirconium is found to be beneficial due to the relatively low crystallization temperature of hafnium-zirconium-oxide (HZO), thus it is back-end-of-line (BEoL) compatible. The thickness of HZO has a significant impact on ferroelectric device reliability. High operation temperatures and high endurance are important criteria depending on the application. Herein, various HZO thicknesses (7, 8, and 10 nm) in MFM (metal-ferroelectric-metal) capacitors are investigated at varying operation temperatures (25 to 175 °C) at varying electric fields (±3 to ±5.4 MV cm−1) with respect to polarization, leakage current, endurance, and retention. 7 nm HZO showed promising results with an endurance of 107 cycles, with a low leakage current density, and almost no retention loss after 10 years. Extrapolated results at operation conditions (±2 MV cm−1 and 10 MHz) showed an endurance of 1010 cycles.  相似文献   
283.
In this study, the polyvinyl alcohol (PVA) and sodium caseinate (SC) nanofibers were produced by a single-fluid electrospinning method from their blends. Afterward, the cross-linking process with two different methods was applied to the PVA/SC (70/30, v/v) ratio, which was selected according to the surface and mechanical properties of the electrospun mat. In the first method, different ratios (15%, 20%, 25%, and 30%) of glutaraldehyde (GLA) cross-linking agents were added to the PVA/SC solution and then, PVA/SC/GLA nanofibers were obtained. In the second method (in-situ method), the nanofibers obtained from the PVA/SC solution were cross-linked by dipping into the cross-linking solution. After, PVA/SC/GLA/Zinc oxide nanoparticles (ZnO NP) mats were obtained by adding ZnO NP at different rates to the PVA/SC/GLA (7030-25GLA) solution, which was chosen according to the results of thermal, mechanical, and moisture test. In addition, performing tests, a cytotoxicity test for fibroblast cell line (L929), and in vitro antibacterial test for Escherichia coli and Staphylococcus aureus were also applied to them. Therefore, the usability of PVA/SC/GLA/ZnO NP nanofibers as an antibacterial effective wound dressing was investigated. Due to the high toxic effect of GLA, it was found that PVA/SC/ZnO cross-linked nanofibers are not suitable for wound dressing use. However, it was determined that the PVA/SC nanofiber cross-linked by the in-situ method had high cell viability according to the cytotoxicity test result and thus could be used as a fibroblast tissue scaffold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号