首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   932篇
  免费   28篇
  国内免费   10篇
电工技术   21篇
综合类   1篇
化学工业   234篇
金属工艺   11篇
机械仪表   17篇
建筑科学   28篇
能源动力   46篇
轻工业   75篇
水利工程   6篇
石油天然气   11篇
无线电   124篇
一般工业技术   172篇
冶金工业   80篇
原子能技术   3篇
自动化技术   141篇
  2024年   17篇
  2023年   25篇
  2022年   53篇
  2021年   54篇
  2020年   46篇
  2019年   47篇
  2018年   62篇
  2017年   38篇
  2016年   46篇
  2015年   36篇
  2014年   42篇
  2013年   59篇
  2012年   38篇
  2011年   34篇
  2010年   32篇
  2009年   27篇
  2008年   32篇
  2007年   20篇
  2006年   18篇
  2005年   15篇
  2004年   12篇
  2003年   19篇
  2002年   15篇
  2001年   10篇
  2000年   11篇
  1999年   12篇
  1998年   31篇
  1997年   9篇
  1996年   22篇
  1995年   15篇
  1994年   11篇
  1993年   13篇
  1992年   2篇
  1991年   4篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1959年   4篇
排序方式: 共有970条查询结果,搜索用时 15 毫秒
41.
Copolymer emulsion lattices based on styrene (St) with methacrylate monomers, were synthesized with composition ratio (5/5) in the presence of a co-surfactants that consists of dodecyl benzene sodium sulfonate with polyvinyl alcohol (DBSS/PVA) and DBBS with polyoxyethylene glycol monomethyl ether (DBBS/POE). The obtained latices were characterized by 1H NMR, rheological and morphological techniques. The effect of latices on the physicomechanical properties of ordinary Portland cement (OPC) pastes was investigated. The results showed that the addition of water mixed to the cement with copolymer improves most of the specific characteristics of OPC.  相似文献   
42.
The initial microorganism adhesion on substrate is an important step for biofilm formation. The surface properties of the silicone and Bacillus cereus were characterized by the sessile drop technique. Moreover, the physicochemical properties (hydrophobicity; electron donor/electron acceptor) of surface adhesion and the impact of bio adhesion on the silicone were determined at different time of contact (3, 7, and 24?h). The results showed that the strain was hydrophilic (Giwi?=?3.37?mJ/m2), whereas the silicone has hydrophobic character (Giwi?=??68.28?mJ/m2). Silicone surface presents a weak electron-donor character (γ ??=?2.2?mJ/m2) conversely to B. cereus that presents an important electron donor-parameter (γ ??=?31.6?mJ/m2). The adhesion of B. cereus to silicone was investigated using environmental scanning electron microscope and image analysis was assessed with the Matlab® program. After 3?h of contact, the data analysis, confirmed the bio adhesion with an amount of 9.6105?cfu/cm2 adhered cells. After 24?h, the percentage of silicone covered reached 93%. Furthermore, despite the difference in hydrophohbicity, the interaction between B. cereus and substrata was favoured by the thermodynamic model of adhesion (ΔG adhesion ?<?0). The real time investigation of the effect of B. cereus adhesion on the physicochemical properties of silicone has revealed that the substrata becomes hydrophilic (θ°?=?47.3, ΔGiwi?=?23.7?mJ/m2), after 7?h of contact. This bio adhesion had also favoured the increase of electron donor/acceptor character of silicone (γ ??=?53.1?mJ/m2 and γ +?=?5.3?mJ/m2).  相似文献   
43.
44.
Physicochemical characterization of microorganism is very important in a wide range of scientific and technological fields. In this study, we reported the isolation and the molecular identification of actinomycetes recovered from cedar wood decay. The isolates named H5 and H8 were identified by 16S rDNA sequencing and were shown to belong to the genus Nocardia and Streptomyces, respectively. Furthermore, physicochemical proprieties including hydrophobicity, electron donor/acceptor, and the Lifshitz–van der Waals (γLW) of these strains were evaluated using contact angle measurements. The results showed that Nocardia sp. (H5) had a hydrophobic (ΔGiwi?=??78.56?mJ/m2) and a weak electron donor/acceptor character. In contrast, results from contact angle measurements showed that the surface free energy of Streptomyces strains (H2, H3, and H8) were ΔGiwi?=?20.71?mJ/m2, ΔGiwi?=?30.63?mJ/m2, and ΔGiwi?=?15.35?mJ/m2, respectively, classifying these microorganisms as hydrophilic bacterium. Moreover, the three strains were predominantly electron donating (γ–?) and exhibit a weak electron-accepting (γ+) character.  相似文献   
45.
We evaluated impacts of conservation agriculture (zero tillage, bed planting and residue retention) on changes in total soil N (TSN) and aggregate-associated N storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum) and wheat (Triticum aestivum) crops were grown during the first 3 years (2008–2011) and in the last year, maize (Zea mays) and wheat were cultivated. Results indicate that after 4 years the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had 15 % higher TSN concentrations than conventional tillage and bed planting plots (CT-B) (0.63 g kg?1 soil) in the 0–5 cm soil layer. CT-B plots had lower soil bulk density that ZT plots in that layer. Plots under ZT-B (0.57 Mg ha?1) contained 20 % higher TSN stock in the 0–5 cm soil layer than CT-B plots (0.48 Mg ha?1). However, tillage had no impact on TSN concentration or stock in the sub-surface (5–15 and 15–30 cm) soil layers. Thus, in the 0–30 cm soil layer, ZT-B plots contained 6 and 5 % higher (P > 0.05) TSN stock compared with CT-B (2.15 Mg N ha?1) and CT-F (2.19 Mg N ha?1) plots respectively after 4 years. Plots that received cotton/maize + wheat residue (C/M + W RES) contained 16 % higher TSN concentration than plots with residues removed (N RES; 0.62 g kg?1 soil) in the surface (0–5 cm) layer. Plots with only cotton/maize residue (C/M RES) or only wheat residue (W RES) retention/incorporation had similar TSN concentrations and stocks in the subsurface layer. Plots under ZT-B also had more macroaggregates (0.25–8 mm) and greater mean weight diameter with lower silt + clay sized particles than CT-B plots in that layer. A greater proportion of large macroaggregates (2–8 mm) in the plots under C/M + W RES compared with N RES were observed. In the 5–15 cm soil layer ZT-B and C/M + W RES treated plots had more macroaggregates and greater mean weight diameter than CT-B and N RES treated plots, respectively. Because of the greater amount of large aggregates, plots under ZT-B and C/M + W RES had 49 and 35 % higher large macroaggregate-associated N stocks than CT-B (38 kg TSN ha?1) and N RES (40 kg TSN ha?1) plots, respectively, in the 0–5 cm soil layer, although aggregates had similar TSN concentrations in all plots. Both tillage and residue retention had greater effects on aggregate-associated N stocks in the 5–15 cm layers. In addition to N content within large macroaggregates, small macroaggregate-associated N contents were also positively affected by ZT-B and C/M + W RES. Tillage and residue retention interaction effects were not significant for all parameters. Thus, the adoption of ZT in permanent beds with crop residue addition is a better management option for improvement of soil N (and thus possibly a reduced dose of fertilizer N can be adopted in the long run), as the management practice has the potential to improve soil aggregation with greater accumulation of TSN within macroaggregates, and this trend would likely have additive effects with advancing years of the same management practices in this region.  相似文献   
46.
The solution rheology of different generations of hyperbranched polyesters in N‐methyl‐2‐pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amidoamine) (PAMAM) dendrimers in ethylenediamine were compared with those of the hyperbranched polyesters in NMP. Both types of dendritic polymers have relative viscosities that are exponential functions of their molar fraction in solution. The slopes of these relative viscosity curves show a linear relationship with respect to the generation number. PAMAM dendrimers have the greater slopes for each generation, reflecting their relatively larger intrinsic viscosity values.  相似文献   
47.

It is critical to develop an appropriate dye degrading technique to preserve the natural environment and human health owing to the dangerous water pollution caused by effluent dyes. So, in this work, a ZSM-5/TiO2/Ni photocatalyst was synthesized as a novel composite and used for degrading methylene blue dye in the solution. The sol–gel approach was used to immobilize titanium dioxide nanoparticles on the ZSM-5 surface, and the resulting photocatalyst was then modified using nickel nanoparticles to improve its photocatalytic performance. The nanocomposite was characterized using different tools such as FE-SEM, EDX, XRD, FT-IR, TGA, and UV–Vis spectrophotometer. The XRD confirmed that the synthesized composite has the characteristic TiO2 peaks. FE-SEM images of ZSM-5 exhibited rough, uneven, and jagged surfaces. A distinct shift in the morphology of the surface resulted when titanium dioxide was fully immobilized on the surface of ZSM-5. Shape complexity and surface roughness of the particles are elevated in the case of the ZSM-5/TiO2/Ni nanocomposite. The maximum % degradation of 50 mL of 15 mg/L of methylene blue dye is 99.17% and achieved at pH?=?8, irradiation time?=?140 min, and photocatalyst dosage?=?0.05 g. The synthesized composite can be regenerated and reused several times without losing its efficacy.

  相似文献   
48.

Two green nanocomposites of Co3O4 decorated CTAB/bentonite (Co@CT/BE) and chitosan/bentonite (Co@CH/BE) were synthesized as enhanced and environmental photocatalysts and antibacterial agents. As photocatalysts, the products were applied in the effective oxidation of toxic methyl parathion pesticide (MP) in wastewater under a visible light source. The application of Co@CH/BE (0.02 g) resulted in the complete oxidation of MP (50 mg/L) after 40 min and complete mineralization after 60 min. while the complete oxidation and mineralization of MP (50 mg/L) by Co@CT/BE was recognized after 75 min and 100 min, respectively. The Co@CH/BE composite is of higher activity than Co@CT/BE and can cause complete oxidation for MP at high concentrations up to 100 mg/L after 75 min. The oxidation pathway was illustrated considering the existence of the hydroxyl radicals as the active oxidizing species and the identified secondary organic compounds during the oxidation tests. The detected intermediate converted into end products of CO2 and inorganic anions of SO4?2, NO3?, and PO4?3 at the final stages of the oxidation processes. As antibacterial agents, the two composites exhibit considerable inhabitation zones of about 20 mm against both the Gram-positive Staphylococcus aureus and Gram-negative bacterium Vibrio Sp. The synthetic Co@CH/BE showed the best antibacterial properties with 200 μg/mL as minimum inhibitory against Staphylococcus aureus.

  相似文献   
49.
50.

Biogenic nanoarchitectured magnetic materials have drawn serious attention throughout the last decade. We have attempted the Helleborus niger flower extract functionalized and templated biogenic synthesis of Cu nanoparticles supported Fe3O4 as a likewise novel material. The plant phytomolecules were deployed as a non-toxic sustainable reductant and an outstanding capping agent to stabilize the synthesized NPs. The synthesized Cu/H.niger@Fe3O4 nanocomposite was undergone comprehensive characterizations through Fourier transformed infrared spectroscopy (FT-IR), electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and inductively coupled plasma (ICP) techniques. The material was catalytically explored in the synthesis of diverse pyrano[3,2-c]chromene derivatives by coupling 4-hydroxycoumarin, malononitrile and a range of aldehydes in hot water when it afforded excellent yields. Based on its core magnetism, the catalyst was easily recovered using a magnet and reused for 8 successive times without considerable loss in catalytic activity. After the chemical application, the synthesized Cu/H.niger@Fe3O4 nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549 and H358 human lung cell lines in-vitro through MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of desired nanocomposite. So, these results suggest that synthesized Cu/H.niger@Fe3O4 as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号