首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   14篇
  国内免费   1篇
电工技术   3篇
化学工业   71篇
金属工艺   7篇
机械仪表   5篇
建筑科学   3篇
能源动力   7篇
轻工业   9篇
石油天然气   1篇
无线电   5篇
一般工业技术   19篇
冶金工业   6篇
自动化技术   18篇
  2024年   1篇
  2023年   1篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   17篇
  2012年   12篇
  2011年   8篇
  2010年   10篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   3篇
排序方式: 共有154条查询结果,搜索用时 250 毫秒
11.
Summary Poly(-3-hydroxy alkanoate) containing unsaturated side chains, PHA-soybean, were produced by feeding Pseudomonas oleovorans with soybean oily acids obtained from soybean oil. Unsaturation of PHA-soybean were found to be 10 mol-% of unsaturated side chains. Main saturated part of the biopolymer was Poly(3-hydroxy octanoate) with minor hexanoate and decanoate units. PHA films were crosslinked via free radical mechanism by means of thermally or under UV irradiation in the presence of benzoyl peroxide, benzophenon, and /or ethylene glycol dimethacrylate (EGDM). Crosslinking yield of the PHA films were found to be from 81 to 93 wt.-% from the sol-gel analysis. Swelling properties of the crosslinked PHA films in chloroform and toluene were also studied. Mc values of crosslinked PHAs were also calculated using Flory-Rehner equation. The crosslinked biopolyester obtained by thermally at 60 °C with benzoyl peroxide indicated the highest crosslinking density. Glass transition temperatures (Tg) of crosslinked biopolyester samples were changed from −33 to −45 °C while that of PHA-soybean was −60 °C. Received: 16 June 2000/Revised version: 22 January 2001/Accepted: 20 May 2001  相似文献   
12.
Summary Macromonomeric peroxy initiator, poly tetrahydrofuran (poly-THF=inimer) were synthesized via cationic polymerization of THF by the mono- (t-BuBP) and tetra-bromo methyl benzoyl peroxides (BDBP)/ZnCl2 initiating system. The macromonomers were characterized by 1H-NMR, IR, and GPC techniques. Methyl methacrylate (MMA) polymerization initiated by poly-THF inimers at 80°C and different times in bulk gave crosslinked poly-THF-b-polymethyl methacrylate block copolymers. Swelling ratios of the crosslinked block copolymers obtained by taking in same amounts of poly-THF inimer and MMA monomer in CHCl3 were decreased versus time. It was compared the results obtained from t-BuBP-, BDBP-ZnCl2 initiating systems with t-BuBP-, BDBP-AgSbF6 initiating systems for THF monomer. Poly(THF-b-MMA) crosslinked block copolymers containing undecomposed peroxide groups initiated the thermal polymerization of styrene, S, were used to obtain poly(THF-b-MMA-b-S) crosslinked multicomponent copolymers at 90°C. The crosslinked multi component copolymers were investigated sol-gel analysis and swelling ratios in CHCl3. "Active" poly(THF-b-MMA) having peroxygen group were used in the free radical coupling reaction of poly butadien (Poly Bd). Poly(THF-b-MMA)-polybutadien crosslinked blend soluble graft copolymers were obtained. Received: 31 July 2001/Revised version: 16 June 2002/ Accepted: 5 July 2002  相似文献   
13.
Synthesis of Poly(methyl methacrylate), PMMA‐multigraft copolymers derived from linseed oil, soybean oil, and linoleic acid PMMA‐g‐polymeric oil/oily acid‐g‐poly(3‐hydroxy alkanoate) (PHA), and their protein adsorption and bacterial adherence have been described. Polymeric oil/oily acid peroxides [polymeric soybean oil peroxide (PSB), polymeric linseed oil peroxide (PLO), and polymeric linoleic acid peroxide (PLina)] initiated the copolymerization of MMA and unsaturated PHA‐soya to yield PMMA–PLO–PHA, PMMA–PSB–PHA, and PMMA–PLina–PHA multigraft copolymers. PMMA–PLina–PHA multigraft copolymers were completely soluble while PMMA–PSB–PHA and PMMA–PLO–PHA multigraft copolymers were partially crosslinked. Crosslinked parts of the PLO‐ and PSB‐multigraft copolymers were isolated by the sol gel analysis and characterized by swelling measurements in CHCl3. Soluble part of the PLO‐ and PSB‐multigraft copolymers and completely soluble PLina‐multigraft copolymers were obtained and characterized by spectroscopic, thermal, gel permeation chromatography (GPC), and scanning electron microscopy (SEM) techniques. In the mechanical properties of the PHA–PLina–PMMA, the elongation at break is reduced up to ~ 9%, more or less preserving the high stress values at its break point (48%) when compared to PLina‐g‐PMMA. The solvent casting film surfaces were studied by means of adsorption of blood proteins and bacterial adhesion. Insertion of the PHA into the multigraft copolymers caused the dramatic increase in bacterial adhesion on the polymer surfaces. PHA insertion into the graft copolymers also increased the protein adsorption. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
14.
One‐step synthesis of star copolymers by reversible addition–fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel dual initiator is reported. Triarm block copolymers comprising one polystyrene (or polyacrylamide) arm and two poly(β‐butyrolactone) arms were synthesized in one‐step by simultaneous RAFT polymerization of styrene (St) (or acrylamide, designated as AAm) and ROP of β‐butyrolactone (BL) in the presence of a novel trifunctional initiator, 1,2‐propanediol ethyl xanthogenate (RAFT‐ROP agent). This dual initiator was obtained through the reaction of 3‐chloro‐1,2‐propanediol with the potassium salt of ethyl xanthogenate. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The characterization of the products was achieved using Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), Gas chromatography–mass spectrometry (GC–MS), gel‐permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
15.
16.
The study showed an application of the 3?D Digital Image Correlation Method (3?D-DIC) for detection of von Mises strain in samples of the self-etch, self-adhesive resin based cement (RBC). The aim was to determine and compare strain in the self-cured and light-cured Maxcem Elite, furthermore to investigate the hardness of these two cement-types. The experiment was carried out using two groups of Maxcem Elite (Kerr, Orange, CA, USA) samples; each tested group includes five (ø5?×?2?mm sized) samples, for both self-curing and light-curing mode. All samples were prepared by filling teflon ring-type molds. In addition, Vickers micro-hardness was measured for all samples. Maxcem Elite showed similar maximum strain values from 10% to 12% for both groups. Besides the maximum strain value, the 3?D-DIC method also enabled monitoring the change of strain field even after the recommended polymerization time. This method has shown that the polymerization shrinkage continues even after 10?min which disagreed with manufacturer’s suggestion. Group II showed maximum strain values of 12% in the peripheral zone after 10?min, in the last Stage (Stage 60). Statistically significant difference was not found in the overall strain between self- and light-cured Maxcem Elite neither peripherally (p?=?0.118) nor centrally (p?=?0.879). However, statistical significance was found in strain regarding central and peripheral zone in both, self-cured (p?=?0.020) and light-cured (p?=?0.002) Maxcem Elite. The mean von Mises strain values in the periphery of the samples (Section 0) were significantly higher compared to strain values in the center of the samples (for Section 1 and 2). The last stage (Stage 60) of the light-cured Maxcem Elite polymerization showed significantly higher values of von Mises strain compared to initial stage (Stage 0). Higher values of micro-hardness were noticed on the surfaces directly exposed to LED lamp after performing measurements of micro-hardness on light-cured samples.  相似文献   
17.
The design and the development of novel scaffold materials for tissue engineering have attracted much interest in recent years. Especially, the prepared nanofibrillar scaffold materials from biocompatible and biodegradable polymers by electrospinning are promising materials to be used in biomedical applications. In this study, we propose to produce low‐cost and cell‐friendly bacterial electrospun PHB polymeric scaffolds by using Alcaligenes eutrophus DSM 545 strain to PHB production. The produced PHB was characterized by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Nanofibrous scaffolds were fabricated via electrospinning method that has a fiber diameter approximately 700–800 nm. To investigate cell attachment, cell growth, and antioxidant enzyme activity on positively and negatively charged PHB scaffold, PHB surface was modified by plasma polymerization technique using polyethylene glycol (PEG) and ethylenediamine (EDA). According to the results of superoxide dismutase (SOD) activity study, PEG‐modified nanofibrillar scaffolds indicated more cellular resistance against oxidative stress compared to the EDA modification. As can be seen in cell proliferation results, EDA modification enhanced the cell proliferation more than PEG modification, while PEG modification is better as compared with nonmodified scaffolds. In general, through plasma polymerization technique, surface modified nanofibrillar structures are effective substrates for cell attachment and outgrowth. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
18.
The increasing complexity of distribution systems requires general, efficient, and large-scale capable methods. This paper proposes a new technique to find the tap positions of step voltage regulators in multiphase load flow solvers in a direct and efficient manner. This is achieved by applying Newton method to the system of equations obtained by using the concept of augmented matrix formulation and adding the constraint equations. This approach allows employing the regulator equations directly. The regulators are modeled by taking into account the line drop compensator circuit with its settings, i.e., the desired voltage level, bandwidth, and R′ and X′ settings, which represent the scaled impedance parameters of the distribution feeder between the regulator and the load center at which the voltage is controlled. The limits of the regulators such as minimum and maximum tap positions are also accounted for. The proposed technique represents a voltage regulator with transformer equations using an augmented matrix formulation. The mismatch equations are developed using the desired voltage setting in constraint equations with transformation ratio of the transformer being the unknown variable. The Jacobian matrix, which is constructed using the augmented matrix formulation, is expanded to hold the constraint equations of voltage regulators. The proposed new method is tested on a variety of test circuits including the large-scale IEEE 8500 Node Test Feeder, and the minimum number of iterations reported in the literature is achieved as presented in this paper.  相似文献   
19.
Scotch pine, eastern spruce, and eastern beech samples sawed longitudinally were impregnated with a new type of polymerization mixture (macroinimer and styrene), leading to crosslinked block copolymers of styrene and poly(ethylene glycol). Weight gains of 36.37–91.13% were obtained after polymerization for 2 h. Water uptake of the polymerized wood was found to be 35.13–72.07% after a water soak test of 144 h. While spruce gave the highest uptake (72.07%), beech showed the lowest value (35.13%). The specimens impregnated with the mixture of macroinimer and styrene showed a water-repellent effectiveness of 35.14–58.15% after a water soaking test of 144 h. The highest values of water-repellent effectiveness were found for spruce, while the lowest values were obtained for pine. A maximum antiswell efficiency (ASE) of 42.43% was obtained for spruce, followed in order by beech and pine, respectively. The ASE value increases with an increase in wt % gain. Improvements of 19.12% in longitudinal compression and 25% in bending strength were also achieved for spruce samples with low weight percent gain. IR spectroscopy was used for chemical characterization of the wood–polymer composite. © 1993 John Wiley & Sons, Inc.  相似文献   
20.
Redox polymerization of methylmethacrylate (MMA) using Ce(IV) with poly(oxyethylene) having azo and hydroxy functions was carried out to yield methylmethacrylate-ethylene glycol block copolymers with labile azo linkages in the main chain. These prepolymers were used to initiate the radical polymerization of styrene through the thermal decomposition of the azo group, resulting in the formation of multiblock copolymers. Successful blocking has been confirmed by fractional precipitation, a strong change in the molecular weight distribution and spectral measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号