首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   10篇
  国内免费   9篇
电工技术   7篇
综合类   2篇
化学工业   92篇
金属工艺   96篇
机械仪表   4篇
建筑科学   13篇
能源动力   27篇
轻工业   11篇
水利工程   1篇
无线电   86篇
一般工业技术   123篇
冶金工业   156篇
原子能技术   1篇
自动化技术   58篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   3篇
  2014年   18篇
  2013年   33篇
  2012年   34篇
  2011年   41篇
  2010年   48篇
  2009年   35篇
  2008年   36篇
  2007年   36篇
  2006年   25篇
  2005年   14篇
  2004年   16篇
  2003年   14篇
  2002年   21篇
  2001年   16篇
  2000年   20篇
  1999年   25篇
  1998年   21篇
  1997年   37篇
  1996年   25篇
  1995年   15篇
  1994年   17篇
  1993年   14篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有677条查询结果,搜索用时 14 毫秒
671.
672.
The mechanical-property improvement of directionally-solidified Nickel-based single crystal(SC)superalloy with the single-direction magnetic fields is limited by their destructiveness on the dendritic microstructure.Here,the work present breaks through the bottleneck.It shows that the application of the cusp magnetic field(CMF)ensures that the dendrites are not destroyed.This feature embodies that the primary dendrite trunks arrange regularly and orderly,as well the secondary dendrite arms grow symmetrically.By contrast,both the unidirectional transverse and longitudinal magnetic field destroy the dendrite morphology,and there are a number of stray grains near the totally-re melted interface.The nondestructive effect is achieved mainly by the combined action of the thermoelectromagnetic force on the dendrites and thermoelectromagnetic convection in the melt during directional solidification.The investigation should contribute a new route for dramatically and effectively improving the crystal quality and mechanical properties of the directionally-solidified alloys.  相似文献   
673.
The phase transition and influence of the applied stress on the texture evolution in the as-cast Ni-Mn-Ga ferromagnetic shape-memory alloys were studied by the time-of-flight (TOF) neutron diffraction technique. The neutron diffraction experiments were performed on the General Purpose Powder Diffractometer (Argonne National Laboratory). Inverse pole figures were determined from the neutron data for characterizing the orientation distributions and variant selections of polycrystalline Ni-Mn-Ga alloys subjected to different uniaxial compression deformations. Texture analyses reveal that the initial texture for the parent phase in the as-cast specimen was composed of , , , and , which was weakened after the compression deformation. Moreover, a strong preferred selection of martensitic-twin variants (and ) was observed in the transformed martensite after a compression stress applied on the parent phase along the cyclindrical axis of the specimens. The preferred selection of variants can be well explained by considering the grain/variant-orientation-dependent Bain-distortion energy. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.  相似文献   
674.
Microstructural Control of Ti-Al-Nb-W-B Alloys   总被引:1,自引:0,他引:1  
In this work, new TiAl alloys containing W, B, and Nb have been developed. Fine uniform microstructures, with colony size smaller than 50 μm, can be conveniently obtained after hot-isostatic pressing (HIP) and homogenization treatment without any grain-refining processes using hot deformation. The effects of tungsten and boron on the microstructure of the TiAl alloys, including the colony size and lamellar spacing, were analyzed. This work shows that a small additional amount of W can refine the grain size of the Ti-Al-Nb-W-B alloys. The lamellar spacing also decreases with increasing W concentration. When the amount of W is greater than 0.4 at. pct, the β phase is stabilized and remains at room temperature, which can degrade the ductility of the alloy. Mechanical properties, such as the hardness of the alloy, can be increased by the addition of the alloying element through the solution strengthening and refinement of the grain size. This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12-16, 2006 in San Antonio, Texas and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.  相似文献   
675.
Recently,the eutectic high-entropy alloy(EHEA),AlCoCrFeNi2.1,can reach a good balance of strength and ductility.The dual-phase alloy exhibits a eutectic lamellar microstructure with large numbers of interfaces.However,the role of the interfaces in plastic deformation have not been revealed deeply.In the present work,the orientation relationship(OR)of the interfaces has been clarified as the Kurdjumov-Sachs(KS)interfaces presenting〈111〉B2 〈110〉FCCand {110} B2{111}FCC independent of their morphologies.There exist three kinds of interfaces in the EHEA,namely,The dominating interface and the secondary interface are both non-slip planes and atomistic-scale faceted,facilitating the nucleation and slip transmission of the dislocations.The formation mechanism of the preferred interfaces is revealed using the atomistic geometrical analysis according to the criteria of the low interfacial energy based on the coincidence-site lattice(CSL)theory.In particular,the ductility of the dual-phase alloy originates from the KS interface-induced slip continuity across interfaces,which provides a high slip-transfer geometric factor.Moreover,the strengthening effect can be attributed to the interface resistance for the dislocation transmission due to the mismatches of the moduli and lattice parameters at the interfaces.  相似文献   
676.
There is currently a gap in our understanding of mechanisms that contribute to high strength and high plasticity in high strength UFG ferritic steel with nano-size Fe3C carbides in situations that involve com-bination of various strain rates and high temperature.In this regard,we describe the mechanistic basis of obtaining high strength-high plasticity combination in an ultrafine-grained(UFG)(~500±30 nm)ferritic steel with nano-size carbides,which sustained large plastic deformation,exceeding 100%elon-gation at a temperature significantly below 0.5 of the absolute melting point(Tm).To address the missing gap in our knowledge,we conducted a series of experiments involving combination of strain rate and temperature effects in conjunction with electron microscopy and atom probe tomography(APT).Strain rate studies were carried out at strain rates in the range of 0.0017-0.17 s-1 and at different temperatures from 25℃to 600℃.Dynamic recrystallization occurred at 600℃,resulting in a significant decrease in yield and tensile strength.Nevertheless,the UFG ferritic steels had an advantage in tensile strength(σUTS)and elongation-to-failure(εf)at 600℃,especially at strain rate of 0.0017 s-1,with high σUTS of 510 MPa and excellent low temperature(<0.42Tm)superplasticity(εf=110%).These mechanical properties are significantly superior compared to similar type of steels at identical temperature.A mechanistic under-standing of mechanical behavior of UFG ferritic steels is presented by combining the effect of strain rate,temperature,and nano-size carbides.  相似文献   
677.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号