首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   23篇
  国内免费   3篇
电工技术   9篇
综合类   2篇
化学工业   70篇
金属工艺   7篇
机械仪表   21篇
建筑科学   21篇
能源动力   15篇
轻工业   26篇
水利工程   2篇
石油天然气   5篇
无线电   27篇
一般工业技术   61篇
冶金工业   4篇
原子能技术   1篇
自动化技术   67篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   22篇
  2020年   22篇
  2019年   17篇
  2018年   29篇
  2017年   22篇
  2016年   18篇
  2015年   13篇
  2014年   24篇
  2013年   33篇
  2012年   23篇
  2011年   29篇
  2010年   19篇
  2009年   15篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
331.
This paper presents a high level error detection and correction method called HVD code to tolerate multiple bit upsets (MBUs) occurred in memory cells. The proposed method uses parity codes in four directions in a data part to assure the reliability of memories. The proposed method is very powerful in error detection while its error correction coverage is also acceptable considering its low computing latency. HVD code is useful for applications whose high error detection coverage is very important such as memory systems. Of course, this code can be used in combination with other protection codes which have high correction coverage and low detection coverage. The proposed method is evaluated using more than one billion multiple fault injection experiments. Multiple bit flips were randomly injected in different segments of a memory system and the fault detection and correction coverages are calculated. Results show that 100% of the injected faults can be detected. We proved that, this method can correct up to three bit upsets. Some hardware implementation issues are investigated to show tradeoffs between different implementation parameters of HVD method.  相似文献   
332.
Multicomponent nanocomposite materials based on a high-performance epoxy system and single-walled carbon nanotubes (SWNTs) have been prepared. The noncovalent wrapping of nitric acid-treated SWNTs with a PEO-based amphiphilic block copolymer leads to a highly disaggregated filler with a boosted miscibility in the epoxy matrix, allowing its dispersion without organic solvents. Although direct dispersion of acid-treated SWNTs results in modestly improved epoxy matrix mechanical properties, the incorporation of wrapped SWNTs produces a huge increase in toughness (276% improvement at 0.5 wt % loading) and impact strength (193% at 0.5 wt % loading) with no detrimental effect on the elastic properties. A synergistic effect between SWNTs and the block copolymer is revealed on the basis of tensile and impact strength results. Atomic force microscopy has been applied, obtaining stiffness mappings that identify nanostructure features responsible of the dynamic mechanical behavior. The electrical percolation threshold is greatly reduced, from 0.31 to 0.03 wt % SWNTs when block copolymer-wrapped SWNTs are used, and all the measured conductivity values increased up to a maximum of 7 orders of magnitude with respect to the baseline matrix (1 wt % wrapped-SWNTs loading). This approach provides an efficient way to disperse barely dispersible SWNTs without solvents into an epoxy matrix, and to generate substantial improvements with small amounts of SWNTs.  相似文献   
333.
With respect to the inherent advantages of multipath routing, nowadays multipath routing is known as an efficient mechanism to provide even network resource utilization and efficient data transmission in different networks. In this context, several multipath routing protocols have been developed over the past years. However, due to the time-varying characteristics of low-power wireless communications and broadcast nature of radio channel, performance benefits of traffic distribution over multiple paths in wireless sensor networks are less obvious. Motivated by the drawbacks of the existing multipath routing protocols, this paper presents an Interference-Minimized MultiPath Routing protocol (IM2PR) which aims to discover a sufficient number of minimum interfering paths with high data transmission quality between each event area and sink node in order to provide efficient event data packet forwarding in event-driven wireless sensor networks. Extensive performance evaluations show that IM2PR presents improvements over the Micro Sensor Multipath Routing Protocol and Energy-Efficient data Routing Protocol as follows: 50 and 70 % in term of packet reception ratio at the sink, 44 and 80 % in term of goodput, 33 and 40 % in term of packet delivery latency, 40 and 57 % in term of energy consumption, 50 and 60 % in term of packet delivery overhead.  相似文献   
334.
335.
One of the problematic concerns in petroleum industries is the deposition of heavy fractions of crude oil such as asphaltene fraction during production and transportation. The utilization of inhibitors is known as a relative low cost and effective method for asphaltene inhibition. In this study, Radial basis function artificial neural network (RBF-ANN) was applied to predict asphaltene precipitation reduction in terms of structure and concentration of inhibitor and oil properties. In order to training and testing of RBF-ANN the required data are extracted from reliable sources. The predicted asphaltene precipitation reduction values were compared with the actual data statistically and graphically. The coefficients of determination for training and testing phases of RBF-ANN were determined as 0.995906 and 0.994853 respectively. These evaluations showed that the RBF-ANN as a predictive tool has great capacity to estimate effect of asphaltene inhibitors on reduction of asphaltene precipitation.  相似文献   
336.
This research reveals the critical role of basal slip in the substructure development during friction stir processing of a magnesium alloy. In this respect, the intragranular lattice rotation axes are considered to identify the activity of different slip systems. The applied shear strain during the procedure is stored in the matrix through slip-induced rotations at the grain level. The rotations around distinct Taylor axes produce “slip domains” separated by necessary boundaries from the parent grains, significantly contributing in grain refinement. The basal slip is easily activated in grains holding different stored energy; however, the nonbasal slip has a higher dependency on the amount of local applied strain. Determining the contribution of different slip systems in strain accommodation reveals that the basal slip imposes the highest fraction of low-angle boundaries into the microstructure leading to the development of the ultimate grain boundary structure.  相似文献   
337.
Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.  相似文献   
338.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号