首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   35篇
  国内免费   4篇
电工技术   2篇
综合类   1篇
化学工业   157篇
金属工艺   21篇
机械仪表   19篇
建筑科学   43篇
矿业工程   4篇
能源动力   20篇
轻工业   60篇
水利工程   10篇
无线电   75篇
一般工业技术   190篇
冶金工业   106篇
原子能技术   8篇
自动化技术   143篇
  2023年   12篇
  2022年   15篇
  2021年   41篇
  2020年   8篇
  2019年   14篇
  2018年   22篇
  2017年   24篇
  2016年   41篇
  2015年   18篇
  2014年   39篇
  2013年   45篇
  2012年   64篇
  2011年   62篇
  2010年   32篇
  2009年   47篇
  2008年   51篇
  2007年   36篇
  2006年   29篇
  2005年   25篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   27篇
  1997年   14篇
  1996年   22篇
  1995年   12篇
  1994年   5篇
  1993年   11篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
  1976年   11篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
排序方式: 共有859条查询结果,搜索用时 15 毫秒
31.
Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find a moderate p-type doping, a high-carrier mobility and resolve the half-integer quantum Hall effect typical of high-quality graphene samples. A rough estimation of the density of states is given from temperature measurements.  相似文献   
32.
A silica nanoparticle-based DNA biosensor capable of detecting Bacillus anthracis bacteria through the use of unlabelled ss-oligonucleotides has been developed. The biosensor makes use of the optical changes that accompany a nanoparticle-immobilized cationic conjugated polymer (polythiophene) interacting with single-stranded vs. hybridized oligonucleotides, where a fluorescence signal appears only when hybridized DNA is present (i.e. only when the ss-oligonucleotide interacting with the polymer has hybridized with its complement). In order to enhance the sensitivity of the biosensor, two different nanoparticle architectures were developed and used to elucidate how the presence of neighboring fluorophores on the nanoparticle surface affects F?rster-resonant energy transfer (FRET) between the polythiophene/oligonucleotide complex (FRET donor) and the fluorophores (FRET acceptors). We demonstrate that the silica nanoparticle-based FRET platform lowers the limit of detection at least 10-fold in comparison to the polythiophene itself, and allows the detection of ~2 × 10(-12) moles of ss-oligonucleotide in a 100 μL sample with a standard fluorimeter (i.e. has a limit of detection of ~2 nM ssDNA). Such nanoparticle-based biosensor platforms are beneficial because of the robustness and stability inherent to their covalent assembly and they provide a valuable new tool that may allow for the sensitive, label-free detection (the target DNA that produces the fluorescence signal is unlabelled) without the use of polymerase chain reaction.  相似文献   
33.
This paper reports mesoscopic Monte Carlo simulations (in which a ‘mesoscopic particle’ corresponds to a group of atoms or molecules) of interfacial films in ZnO-Bi2O3 binary ceramics. We observe the formation of Bi2O3-rich interfacial phases at the surface of ZnO grains (surface amorphous films) or at the grain-boundary between ZnO grains (intergranular films). In qualitative agreement with the experimental results reported on premelting of ceramics, the thickness of these films increases as the temperature increases up to the eutectic temperature. Moreover, the Bi2O3 concentration in the surficial or intergranular films is found to be larger than in the bulk. These surficial films exhibit both some layering and lateral ordering.  相似文献   
34.
Self-assembled monolayers (SAMs) of organic molecules are of exceptional technological importance since they represent a convenient, flexible, and simple system for tuning the chemical and physical properties of surfaces. The fine control of surface properties is directly dependent on the structure of mixed SAMs which is difficult to characterize at the nanoscale with usual techniques such as scanning probe microscopies. In this study, we report on a general method to investigate at the nanoscale the structure of molecular patterns which consist in SAMs of two components. Iron oxide nanoparticles (NPs) have been used as probing agents to study indirectly the structure of mixed SAMs. Mixed SAMs were prepared by the replacement of mercaptododecane (MDD) adsorbed by mercaptoundecanoic acid (MUA) molecules on gold substrates. Therefore, the SAM surface displays both chelating carboxylic terminal groups and non-chelating methylene terminal groups. As NPs have been previously demonstrated to specifically interact with carboxylic acid groups, the increasing density in NPs was correlated with the evolution of the COOH/CH(3) terminal groups ratio. Therefore the structure of mixed SAMs was studied indirectly as well as the kinetic of the replacement reaction and its mechanism. With this aim, we took advantage of the SPR properties of the gold substrate and of the high refractive index of iron oxide nanoparticles to follow their assembling on mixed SAMs as a time resolved study. The high sensitivity and tuning of the SPR signal over a wide range of wavelengths are correlated with the NP density. Furthermore, SEM combined with image analysis has allowed studying the replacement rate of MDD by MUA in SAMs. We took also advantages of the magnetic properties of NPs to evaluate qualitatively the replacement of thiol molecules.  相似文献   
35.
The present study aimed at using plant waste (Musa Paradisiaca) for manufacturing clay-based ceramics in order to promote lower sintering temperature while preserving the properties of use. Two kaolinic-illitic clays (NZ1 and KO) from Central African Republic were used mixed with 1 to 10 mass% of the plant waste (MP). The clays and the waste exhibited accessory phases: quartz and iron oxides, and K2O respectively. MP was collected, dried and sieved (<100 μm) previously to its mixture with clays. According to the sintering behavior of KO and NZ1 derived from thermodilatometry, the densification was obtained after firing at 1200°C. Results showed that open porosity decreased from 35% to 17% with increasing temperature in the range 900 to 1200°C for KO and NZ1. This porosity remained in the range 30%-40% while increasing the MP content (firing at 1000°C for 1h.). The optimized MP content was 3 and 5 mass% for KO and NZ1 clay materials respectively. The compressive strength and thermal conductivities were improved compared to clay samples without MP fired at 1200°C. Moreover a significant decrease in the sintering temperature was achieved, leading to energy saving in line with sustainability issues.  相似文献   
36.
The stability of the catalyst used in hydrodeoxygenation (HDO) of biomass-derived oils needs improvement. La has been applied in delaying Al2O3 phase-change under reaction conditions. Lanthanum (0.5–8 wt.%)-γ-alumina was studied as Pt (1 wt.%) carrier aimed at guaiacol (GUA) HDO. Materials characterization included N2 physisorption, X-ray diffraction (XRD), thermal analysis, FTIR, UV–vis, and TPR. Solids pore size (~8–10 nm) was suitable for GUA (kinetic diameter~0.668 nm) hydrotreating. Mixed carriers were amorphous (XRD), suggesting well-dispersed La domains; meanwhile, carbonates/bicarbonates were formed (from CO2) due to the basic surface properties of modified supports (FTIR). That could impart catalyst stability by inhibiting coking through the passivation of Lewis acidity on Al2O3. Pt reducibility increased with La loading in various formulations. However, that was not reflected in enhanced GUA HDO (T = 488 K and P = 3.2 MPa, batch reactor), presumably due to the strong metal–support interaction (SMSI), where LaOx covered the metallic Pt particle surface. GUA HDO on various catalysts was approximated by pseudo-first-order kinetics (integral regime, k), where deviations were observed as La loading increased, presumably by an SMSI state that could affect the rate-determining step of the reaction mechanism. Basic sites provided by rare-earth could contribute to altering HDO reaction pathways as well. At 1 wt.% rare-earth, GUA HDO was maximized (k~25% higher than that on Pt/Al2O3), with that material also exhibiting similar deoxygenation (85%–90% at total GUA conversion) to the latter Pt over pristine alumina. Conversely, both parameters significantly diminished over the catalyst of the highest La content. Materials at low rare-earth concentrations deserve further studies focused on catalyst stability under HDO conditions.  相似文献   
37.
Error-in-variables model (EVM) methods are used for parameter estimation when independent variables are uncertain. During EVM parameter estimation, output measurement variances are required as weighting factors in the objective function. These variances can be estimated based on data from replicate experiments. However, conducting replicates is complicated when independent variables are uncertain. Instead, pseudo-replicate runs may be performed where the target values of inputs for repeated runs are the same, but the true input values may be different. Here, we propose a method to estimate output-measurement variances for use in multivariate EVM estimation problems, based on pseudo-replicate data. We also propose a bootstrap technique for quantifying uncertainties in resulting parameter estimates and model predictions. The methods are illustrated using a case study involving n-hexane hydroisomerization in a well-mixed reactor. Case-study results reveal that assumptions about input uncertainties can have important influences on parameter estimates, model predictions and their confidence intervals.  相似文献   
38.
39.
Coat-hanger dies are commonly used for the extrusion of plastic sheets and films. To describe the flow of a molten polymer through a coat-hanger die, a two-dimensional approach is necessary. Moreover, the thermal effects, which play an important role in the flow distribution, have to be taken into account. In this paper, two numerical models for the simulation of coat-hanger dies are described and compared. These models differ mainly in the simplifying assumptions used and in the treatment of the thermal problem. The simulations obtained with the two models were compared with each other and with experimental data. The discrepancies between the two models can be explained by the different theoretical treatments.  相似文献   
40.
Life cycle assessment (LCA) is an environmental assessment tool generally applied to products but also to processes. Features of the LCA of processes are presented in this paper. This approach was used to compare two flue gas cleaning processes: the typical wet-type process and the new transported droplets column process. The LCA result shows that the global environmental burden is similar between the two processes, which confirms the viability of the transported droplets column. The distribution of the environmental burden, however, is different between the two processes. The weak points of the transported droplets column are the pollution transfer from air to water and a larger volume to stabilize. Its strong point: it is more efficient in capturing dust particles and toxic pollutants. This process could be improved from an environmental standpoint by adding an electrostatic filter upstream of the transported droplets column to capture the particles. The laboratory results of the transported droplets column need, however, to be confirmed at a larger scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号