首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5833篇
  免费   161篇
  国内免费   9篇
电工技术   84篇
综合类   9篇
化学工业   1071篇
金属工艺   135篇
机械仪表   138篇
建筑科学   285篇
矿业工程   15篇
能源动力   180篇
轻工业   435篇
水利工程   22篇
石油天然气   10篇
无线电   483篇
一般工业技术   1005篇
冶金工业   1287篇
原子能技术   88篇
自动化技术   756篇
  2022年   64篇
  2021年   103篇
  2020年   66篇
  2019年   80篇
  2018年   71篇
  2017年   78篇
  2016年   116篇
  2015年   95篇
  2014年   115篇
  2013年   222篇
  2012年   228篇
  2011年   285篇
  2010年   228篇
  2009年   201篇
  2008年   234篇
  2007年   231篇
  2006年   215篇
  2005年   162篇
  2004年   179篇
  2003年   142篇
  2002年   135篇
  2001年   119篇
  2000年   106篇
  1999年   137篇
  1998年   357篇
  1997年   260篇
  1996年   181篇
  1995年   129篇
  1994年   118篇
  1993年   114篇
  1992年   79篇
  1991年   70篇
  1990年   71篇
  1989年   51篇
  1988年   73篇
  1987年   59篇
  1986年   43篇
  1985年   72篇
  1984年   40篇
  1983年   52篇
  1982年   43篇
  1981年   42篇
  1980年   47篇
  1979年   39篇
  1978年   42篇
  1977年   59篇
  1976年   97篇
  1975年   29篇
  1974年   39篇
  1973年   35篇
排序方式: 共有6003条查询结果,搜索用时 15 毫秒
91.
In recent years methods have been developed to extract the seaward landfast ice edge from series of remote sensing images, with most of them relying on incoherent change detection in optical, infrared, or radar amplitude imagery. While such approaches provide valuable results, some still lack the required level of robustness and all lack the ability to fully automate the detection and mapping of landfast ice over large areas and long time spans. This paper introduces an alternative approach to mapping landfast ice extent that is based on coherent processing of interferometric L-band Synthetic Aperture Radar (SAR) data. The approach is based on a combined interpretation of interferometric phase pattern and interferometric coherence images to extract the extent and stability of landfast ice. Due to the low complexity of the base imagery used for landfast ice extraction, significant improvements in automation and reduction of required manual interactions by operators can be achieved. A performance analysis shows that L-band interferometric SAR (InSAR) data enable the mapping of landfast ice with high robustness and accuracy for a wide range of environmental conditions.  相似文献   
92.
Virtual globes are becoming ubiquitous in the visualization of planetary bodies and Earth specifically. While many of the current virtual globes have proven to be quite useful for remote geologic investigation, they were never designed for the purpose of serving as virtual geologic instruments. Their shortcomings have become more obvious as earth scientists struggle to visualize recently released digital elevation models of very high spatial resolution (0.5-1 m2/sample) and extent (>2000 km2). We developed Crusta as an alternative virtual globe that allows users to easily visualize their custom imagery and more importantly their custom topography. Crusta represents the globe as a 30-sided polyhedron to avoid distortion of the display, in particular the singularities at the poles characteristic of other projections. This polyhedron defines 30 “base patches,” each being a four-sided region that can be subdivided to an arbitrarily fine grid on the surface of the globe to accommodate input data of arbitrary resolution, from global (BlueMarble) to local (tripod LiDAR), all in the same visualization. We designed Crusta to be dynamic with the shading of the terrain surface computed on-the-fly when a user manipulates his point-of-view. In a similarly interactive fashion the globe's surface can be exaggerated vertically. The combination of the two effects greatly improves the perception of shape. A convenient pre-processing tool based on the GDAL library facilitates importing a number of data formats into the Crusta-specific multi-scale hierarchies that enable interactive visualization on a range of platforms from laptops to immersive geowalls and caves. The main scientific user community for Crusta is earth scientists, and their needs have been driving the development.  相似文献   
93.
We review a number of formal verification techniques supported by STeP, the Stanford Temporal Prover, describing how the tool can be used to verify properties of several versions of the Bakery Mutual exclusion algorithm for mutual exclusion. We verify the classic two-process algorithm and simple variants, as well as an atomic parameterized version. The methods used include deductive verification rules, verification diagrams, automatic invariant generation, and finite-state model checking and abstraction.  相似文献   
94.
Although numerous protein biomarkers have been correlated with advanced disease states, no new clinical assays have been developed. Goals often anticipate disease-specific protein changes that exceed values among healthy individuals, a property common to acute phase reactants. This review considers somewhat different approaches. It focuses on intact protein isoform ratios that present a biomarker without change in the total concentration of the protein. These will seldom be detected by peptide level analysis or by most antibody-based assays. For example, application of an inexpensive method to large sample groups resulted in observation of several polymorphisms, including the first structural polymorphism of apolipoprotein C1. Isoform distribution of this protein was altered and was eventually linked to increased obesity. Numerous other protein isoforms included C- and N-terminal proteolysis, changes of glycoisoform ratios and certain types of sulfhydryl oxidation. While many of these gave excellent statistical correlation with advanced disease, clinical utility was not apparent. More important may be that protein isoform ratios were very stable in each individual. Diagnosis by longitudinal analysis of the same individual might increase sensitivity of protein biomarkers by 20-fold or more. Protein changes that exceed the range of values found among healthy individuals may be uncommon.  相似文献   
95.
It is a well-known fact that Hebbian learning is inherently unstable because of its self-amplifying terms: the more a synapse grows, the stronger the postsynaptic activity, and therefore the faster the synaptic growth. This unwanted weight growth is driven by the autocorrelation term of Hebbian learning where the same synapse drives its own growth. On the other hand, the cross-correlation term performs actual learning where different inputs are correlated with each other. Consequently, we would like to minimize the autocorrelation and maximize the cross-correlation. Here we show that we can achieve this with a third factor that switches on learning when the autocorrelation is minimal or zero and the cross-correlation is maximal. The biological counterpart of such a third factor is a neuromodulator that switches on learning at a certain moment in time. We show in a behavioral experiment that our three-factor learning clearly outperforms classical Hebbian learning.  相似文献   
96.
We present a powerful framework for 3D-texture-based rendering of multiple arbitrarily intersecting volumetric datasets. Each volume is represented by a multi-resolution octree-based structure and we use out-of-core techniques to support extremely large volumes. Users define a set of convex polyhedral volume lenses, which may be associated with one or more volumetric datasets. The volumes or the lenses can be interactively moved around while the region inside each lens is rendered using interactively defined multi-volume shaders. Our rendering pipeline splits each lens into multiple convex regions such that each region is homogenous and contains a fixed number of volumes. Each such region is further split by the brick boundaries of the associated octree representations. The resulting puzzle of lens fragments is sorted in front-to-back or back-to-front order using a combination of a view-dependent octree traversal and a GPU-based depth peeling technique. Our current implementation uses slice-based volume rendering and allows interactive roaming through multiple intersecting multi-gigabyte volumes.  相似文献   
97.
Topology provides a foundation for the development of mathematically sound tools for processing and exploration of scalar fields. Existing topology-based methods can be used to identify interesting features in volumetric data sets, to find seed sets for accelerated isosurface extraction, or to treat individual connected components as distinct entities for isosurfacing or interval volume rendering. We describe a framework for direct volume rendering based on segmenting a volume into regions of equivalent contour topology and applying separate transfer functions to each region. Each region corresponds to a branch of a hierarchical contour tree decomposition, and a separate transfer function can be defined for it. The novel contributions of our work are: 1) a volume rendering framework and interface where a unique transfer function can be assigned to each subvolume corresponding to a branch of the contour tree, 2) a runtime method for adjusting data values to reflect contour tree simplifications, 3) an efficient way of mapping a spatial location into the contour tree to determine the applicable transfer function, and 4) an algorithm for hardware-accelerated direct volume rendering that visualizes the contour tree-based segmentation at interactive frame rates using graphics processing units (GPUs) that support loops and conditional branches in fragment programs  相似文献   
98.
The Morse-Smale complex is an efficient representation of the gradient behavior of a scalar function, and critical points paired by the complex identify topological features and their importance. We present an algorithm that constructs the Morse-Smale complex in a series of sweeps through the data, identifying various components of the complex in a consistent manner. All components of the complex, both geometric and topological, are computed, providing a complete decomposition of the domain. Efficiency is maintained by representing the geometry of the complex in terms of point sets.  相似文献   
99.
Heart rate variability (HRV) represents the cardiovascular control mediated by the autonomic nervous system and other mechanisms. In the established task force HRV monitoring different cardiovascular control mechanisms can approximately be identified at typical frequencies of heart rate oscillations by power spectral analysis. HRV measures assessing complex and fractal behavior partly improved clinical risk stratification. However, their relationship to (patho-)physiology is not sufficiently explored. Objective of the present work is the introduction of complexity measures of different physiologically relevant time scales. This is achieved by a new concept of the autonomic information flow (AIF) analysis which was designed according to task force HRV. First applications show that different time scales of AIF improve the risk stratification of patients with multiple organ dysfunction syndrome and cardiac arrest patients in comparison to standard HRV. Each group's significant time scales correspond to their respective pathomechanisms.  相似文献   
100.
The usefulness of statistical clustering algorithms developed for automatic segmentation of lesions and organs in magnetic resonance imaging (MRI) intensity data sets suffers from spatial nonstationarities introduced into the data sets by the acquisition instrumentation. The major intensity inhomogeneity in MRI is caused by variations in the B1-field of the radio frequency (RF) coil. A three-step method was developed to model and then reduce the effect. Using a least squares formulation, the inhomogeneity is modeled as a maximum variation order two polynomial. In the log domain the polynomial model is subtracted from the actual patient data set resulting in a compensated data set. The compensated data set is exponentiated and rescaled. Statistical comparisons indicate volumes of significant corruption undergo a large reduction in the inhomogeneity, whereas volumes of minimal corruption are not significantly changed. Acting as a preprocessor, the proposed technique can enhance the role of statistical segmentation algorithms in body MRI data sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号