首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   7篇
化学工业   24篇
建筑科学   1篇
能源动力   1篇
轻工业   5篇
石油天然气   2篇
无线电   8篇
一般工业技术   29篇
冶金工业   2篇
自动化技术   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   12篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2005年   3篇
  2004年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有78条查询结果,搜索用时 250 毫秒
11.
A hydroponics experiment was conducted to examine the phytofiltration of Cd by Limnocharis flava (L.) Buchenau grown in low-level Cd-contaminated water. For this, 45 d old seedlings of L .flava were transferred to a floating-support culture system containing nutrient solution spiked with four levels of Cd (0.5, 1, 2 and 4 mg l−1) and were separately harvested after 3, 7, 21 and 30 d. After 30 d harvesting, the percentage removal of Cd from the above four treatments reached up to 98, 96, 95 and 93%, respectively. Interestingly, all treatments had higher growth rate than control at 95% confidence level and plants still remained healthy at 4 mg l−1 Cd exposure. The bioaccumulation study showed a linear relationship of Cd (R2 = 0.896–0.999) in all plant parts with the exposure time (3–30 d) and Cd concentrations in hydroponics system (0.5–4 mg l−1). Although, the root of L. flava had higher Cd concentration than leaf and peduncles, the total Cd concentrations in aerial plant parts were higher than the roots. The maximum bioconcentration factor (BCF) and translocation factor (TF) value of L. flava were calculated as 984.42 and 1.43, respectively. Estimated Cd accumulation capacity of L. flava per unit area (m2) was found to be in the range of 218. 35–1698.92 mg m−2.The experimental results demonstrated that L. flava is a suitable candidate for the phytofiltartion (>93%) of Cd from low-level Cd-contaminated water.  相似文献   
12.
Changes in the biosynthesis and phosphorylation of rat peritoneal macrophage membrane proteins induced by protein malnutrition have been studied. The results clearly indicate that the biosynthesis of high molecular weight proteins (45-200 kDa) and their phosphorylation are significantly reduced in the macrophages isolated from protein deficient (4% protein-fed) rats compared to the control group fed 20% protein diet. Lipopolysaccharide (LPS) treatment both in vivo and in vitro enhanced the synthesis and phosphorylation of these proteins in both control and protein deficient groups; however, the extent of enhancement was much less in the deficient group. These results indicate that besides the down regulation of these membrane proteins, protein malnutrition seems to make these macrophages less responsive to potent immuno stimulants like LPS.  相似文献   
13.
An effort has been made to demonstrate use of a small geotechnical centrifuge as a research tool to understand moisture migration in a silty soil. Such a basic study is essential for understanding the much more complex phenomenon of solute transport through a soil, where the physical, chemical, and biological properties of the soil-solute system play an important role. Present study indicates that the advection in soils is dependent on the state of the soil and, in particular, on its degree of saturation. The effect of pore structure on the advection process has also been demonstrated. The trends of experimental data indicate that modeling of models may be valid only for saturated soils.  相似文献   
14.
Silica–alumina mixed oxide aerogels, with 5, 10, 15, 20, and 25 wt% of alumina in silica, have been synthesized by a hybrid sol–gel technique followed by subcritical drying. The gelation has been carried out under pH values of 3 and 5. pH is a decisive parameter that affects the rate of hydrolysis and condensation of alkoxides. Moreover, it also influences the surface area and porosity features of the final material. The gelation time has been found to be much longer for gels that were gelled at pH 3. Nitrogen sorption studies of the aerogels calcined at 500°C indicate that the mixed oxide aerogels are mesoporous in nature and the gels prepared under a gelation pH of 3 have been found to have higher surface area than the pH 5 counterpart. Transmission electron microscopy and X-ray diffraction analysis have been performed to verify the homogeneity of the mixed oxide aerogel.  相似文献   
15.
Silica aerogels were synthesised by subcritical drying technique which involves controlled solvent exchange and aging of the wet gel in silane solution followed by drying under controlled conditions. Effect of temperature of aging in silane solution on the porosity characteristics of silica aerogels and the thermal pore stability of the resultant gels were investigated. Aging in silane solution leads to an increased degree of condensation reactions, siloxane crosslinking and the dissolution and reprecipitation of silica monomers to the gel structure and enhances the total strength of the gel. Thermal aging of the wet gel have a pronounced effect on bulk density, linear drying shrinkage, surface area and pore volume. As the temperature of aging increases the bulk density decreases whereas the surface area and pore volume were found to increase. We could achieve a surface area of 1040 m2/g, pore volume 1.2 cc/g and an average pore size of 49 Å corresponding to an aging temperature of 70 °C. Thermal pore stability of the gel was found to be up to 700 °C above which densification of SiO2 gel starts. The novel findings will help in tailoring the process parameters to prepare mesoporous oxides from sol–gel precursors with specific pore features.  相似文献   
16.
Oxidative stress and upregulation of gastric H+, K+-ATPase enzyme activity have been known to cause ulcer pathogenicity for which safer drugs are yet to be identified. Aqueous extracts of seven commonly consumed vegetable sources were screened for inhibition of H+, K+-ATPase and antioxidant activities. Results indicated that Z. officinale (Ginger) followed by M. arvensis (Pudina) are potent gastroprotective sources with inhibition of H+, K+-ATPase of IC50 of 18.3 ± 0.7 and 25.2 ± 0.9 μg gallic acid equivalents/ml respectively, which is almost equivalent or better than the known inhibition of H+, K+-ATPase—Omeprazole (IC50 ?27 μg/ml). Further, all these vegetable extracts showed multi-potent antioxidant activity, such as free radical scavenging, reducing power ability, and inhibition of lipid peroxidation, which are required to inhibit complex steps of ulcerations. On the basis of the absolute amounts and potency of inhibition of H+, K+-ATPase as well as antioxidant activity of individual phenolic acids, the relative percentage contribution of phenolic acids from different vegetable extracts to both inhibition of H+, K+-ATPase and antioxidant activity was calculated and data revealed that gentisic and protocatechuic acid contributes significantly to both inhibition of H+, K+-ATPase and antioxidant activity.  相似文献   
17.
Acrylic polymers bearing pendant azide and propargyl groups were synthesized by chemical transformation of epoxy‐ and carboxylic functional acrylic precursor polymers and were characterized. These copolymers were crosslinked by reacting them in the presence of Cu(I) catalyst via the azide–alkyne click reaction leading to triazole networks. Influence of catalyst concentration on the crosslinking cure kinetics was investigated, and the activation parameters were evaluated. The activation energy decreased from 90 kJ mol?1 to 25 kJ mol?1 on catalyzing the cure reaction as estimated by Ozawa method. Differential scanning calorimetric analysis indicated thermal decomposition of the residual azide groups at around 200–220°C, which was catalyzed by Cu(I) with associated activation energy of 130–94 kJ mol?1. Isothermal cure reaction and decomposition of the azide groups were predicted using these parameters. Estimation of crosslink density by solvent swelling and dynamic mechanical analyses showed a normal crosslinking behavior. While the solvent swelling rate and the equilibrium swelling decreased, the front factor and diffusion coefficient of swelling showed a transition from non‐Fickian to Fickian as the triazole concentration increased in the network. The click reaction offered an alternate means to crosslink acrylate polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1289‐1300, 2013  相似文献   
18.
Contact inhibition of locomotion (CIL) is the process whereby cells collide, cease migrating in the direction of the collision, and repolarize their migration machinery away from the collision. Quantitative analysis of CIL has remained elusive because cell-to-cell collisions are infrequent in traditional cell culture. Moreover, whereas CIL predicts mutual cell repulsion and ‘scattering’ of cells, the same cells in vivo are observed to undergo CIL at some developmental times and collective cell migration at others. It remains unclear whether CIL is simply absent during collective cell migration, or if the two processes coexist and are perhaps even related. Here, we used micropatterned stripes of extracellular matrix to restrict cell migration to linear paths such that cells polarized in one of two directions and collisions between cells occurred frequently and consistently, permitting quantitative and unbiased analysis of CIL. Observing repolarization events in different contexts, including head-to-head collision, head-to-tail collision, collision with an inert barrier, or no collision, and describing polarization as a two-state transition indicated that CIL occurs probabilistically, and most strongly upon head-to-head collisions. In addition to strong CIL, we also observed ‘trains’ of cells moving collectively with high persistence that appeared to emerge from single cells. To reconcile these seemingly conflicting observations of CIL and collective cell migration, we constructed an agent-based model to simulate our experiments. Our model quantitatively predicted the emergence of collective migration, and demonstrated the sensitivity of such emergence to the probability of CIL. Thus CIL and collective migration can coexist, and in fact a shift in CIL probabilities may underlie transitions between solitary cell migration and collective cell migration. Taken together, our data demonstrate the emergence of persistently polarized, collective cell movement arising from CIL between colliding cells.  相似文献   
19.
20.
Graphene platelets were synthesized from pencil flake graphite and commercial graphite by chemical method. The chemical method involved modified Hummer's method to synthesize graphene oxide (GO) and the use of hydrazine monohydrate to reduce GO to reduced graphene oxide (rGO). rGO were further reduced using rapid microwave treatment in presence of little amount of hydrazine monohydrate to graphene platelets. Chemically modified graphene/polypyrrole (PPy) nanofiber composites were prepared by in situ anodic electropolymerization of pyrrole monomer in the presence of graphene on stainless steel substrate. The morphology, composition, and electronic structure of the composites together with PPy fibers, graphene oxide (GO), rGO, and graphene were characterized using X‐ray diffraction (XRD), laser‐Raman, and scanning electron microscopic (SEM) methods. From SEM, it was observed that chemically modified graphene formed as a uniform nanocomposite with the PPy fibers absorbed on the graphene surface and/or filled between the graphene sheets. Such uniform structure together with the observed high conductivities afforded high specific capacitance and good cycling stability during the charge–discharge process when used as supercapacitor electrodes. A specific capacitance of supercapacitor was as high as 304 F g?1 at a current density of 2 mA cm?1 was achieved over a PPy‐doped graphene composite. POLYM. ENG. SCI., 55:2118–2126, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号