首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   17篇
电工技术   6篇
化学工业   30篇
金属工艺   1篇
机械仪表   1篇
轻工业   1篇
无线电   89篇
一般工业技术   70篇
冶金工业   18篇
自动化技术   5篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   9篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   16篇
  2003年   6篇
  2002年   8篇
  2001年   15篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   12篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
  1976年   3篇
  1975年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有221条查询结果,搜索用时 220 毫秒
31.
The synthesis of doxorubicin‐loaded metal–organic framework nanoparticles (NMOFs) coated with a stimuli‐responsive nucleic acid‐based polyacrylamide hydrogel is described. The formation of the hydrogel is stimulated by the crosslinking of two polyacrylamide chains, PA and PB, that are functionalized with two nucleic acid hairpins ( 4 ) and ( 5 ) using the strand‐induced hybridization chain reaction. The resulting duplex‐bridged polyacrylamide hydrogel includes the anti‐ATP (adenosine triphosphate) aptamer sequence in a caged configuration. The drug encapsulated in the NMOFs is locked by the hydrogel coating. In the presence of ATP that is overexpressed in cancer cells, the hydrogel coating is degraded via the formation of the ATP–aptamer complex, resulting in the release of doxorubicin drug. In addition to the introduction of a general means to synthesize drug‐loaded stimuli‐responsive nucleic acid‐based polyacrylamide hydrogel‐coated NMOFs hybrids, the functionalized NMOFs resolve significant limitations associated with the recently reported nucleic acid‐gated drug‐loaded NMOFs. The study reveals substantially higher loading of the drug in the hydrogel‐coated NMOFs as compared to the nucleic acid‐gated NMOFs and overcomes the nonspecific leakage of the drug observed with the nucleic‐acid‐protected NMOFs. The doxorubicin‐loaded, ATP‐responsive, hydrogel‐coated NMOFs reveal selective and effective cytotoxicity toward MDA‐MB‐231 breast cancer cells, as compared to normal MCF‐10A epithelial breast cells.  相似文献   
32.
A 7‐pyrrolidino‐7‐benzylamino‐8,8‐dicyanoquinodimethane, PBEDQ, ( 1 ), donor–acceptor–modified electrode yields, in the presence of hydroquinone, ( 2 ), an anodic photocurrent with quantum efficiency of 1.5%. The PBEDQ‐functionalized electrode yields, in the presence of the electron acceptor diquat, ( 3 ), a cathodic photocurrent with a quantum efficiency corresponding to 2.1%. The electron transfer cascades leading to the anodic or cathodic photocurrents in the different systems are discussed. It is further demonstrated that the integration of 1,4‐dihydronicotinamide adenine dinucleotide, NADH, as electron donor, with the PBEDQ‐modified electrode leads to an anodic photocurrent. This allowed the assembly of a photobioelectrochemical integrated electrode composed of the photoactive PBEDQ donor–acceptor compound, NAD+ as cofactor, and the NAD+‐dependent glucose dehydrogenase, GDH. Irradiation of the integrated electrode in the presence of glucose results in the GDH–biocatalyzed oxidation of glucose to gluconic acid with the concomitant generation of NADH that acts as electron donor for the photoactive donor–acceptor PBEDQ units, leading to the generation of steady‐state anodic photocurrent. The photocurrent intensities are controlled by the concentrations of glucose. The integrated PBEDQ/NAD+/GDH electrodes introduces a functional photobioelectrochemical electrode for the detection of glucose, and demonstrates the assembly of a functional photo‐biofuel cell that uses light and a biomass product (glucose) for the generation of electric power.  相似文献   
33.
Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.  相似文献   
34.
We experimentally demonstrate dynamic dispersion compensation using a novel nonlinearly chirped fiber Bragg grating in a 10-Gb/s system. A single piezoelectric transducer continuously tunes the induced dispersion from 300 to 1000 ps/nm. The system achieves a bit-error rate=10-9 after both 50 and 104 km of single-mode fiber by dynamically tuning the dispersion of the grating between 500 and 1000 ps/nm, respectively. The power penalty after 104 km is reduced from 3.5 to <1 dB  相似文献   
35.
Several channel-degrading effects are present in nonstatic and dynamically reconfigurable wavelength-division-multiplexed systems and networks due to various types of dispersion in the optical transmission fiber. These effects must be addressed by tunable methods so that data signals do not fade with time. The relevant effects for which we demonstrate tunable compensation include: chromatic dispersion accumulated in a single channel and in multiple channels, polarization mode dispersion, and periodic RF power fading. We utilize a nonlinearly chirped fiber Bragg grating that provides a dispersive function that can be varied continuously by tuning a single mechanical stretching element  相似文献   
36.
37.
Following aptamer-thrombin binding by force measurements   总被引:1,自引:0,他引:1  
The rupture forces between an aptamer (1)-functionalized AFM tip and a thrombin-modified Au surface are analyzed. The rupture force for a single aptamer/thrombin complex is determined as approximately 4.45 pN. The analysis of the system reveals that the rupture forces correspond to the melting of the G-quadruplex structure of the aptamer bound to the thrombin. This melting of the G-quadruplex leads to the dissociation of the aptamer/thrombin complex.  相似文献   
38.
39.
40.
Layered assemblies of photosystem I, PSI, and/or photosystem II, PSII, on ITO electrodes are constructed using a layer‐by‐layer deposition process, where poly N,N′‐dibenzyl‐4,4′‐bipyridinium (poly‐benzyl viologen, PBV2+) is used as an inter‐protein “glue”. While the layered assembly of PSI generates an anodic photocurrent only in the presence of a sacrificial electron donor system, such as dichlorophenol indophenol (DCPIP)/ascorbate, the PSII‐modified electrode leads, upon irradiation, to the formation of an anodic photocurrent (while evolving oxygen), in the absence of any sacrificial component. The photocurrent is generated by transferring the electrons from the PSII units to the PBV2+ redox polymer. The charge‐separated species allow, then, the injection of the electrons to the electrode, with the concomitant evolution of O2. A layered assembly, consisting of a PSI layer attached to a layer of PSII by the redox polymer PBV2+, leads to an anodic photocurrent that is 2‐fold higher, as compared to the anodic photocurrent generated by a PSII‐modified electrode. This observation is attributed to an enhanced charge separation in the two‐photosystem assembly. By the further nano‐engineering of the two photosystems on the electrode using two different redox polymers, vectorial electron transfer to the electrode is demonstrated, resulting in a ca. 6‐fold enhancement in the photocurrent. The reversed bi‐layer assembly, consisting of a PSII layer linked to a layer of PSI by the PBV2+ redox polymer, yields, upon irradiation, an inefficient cathodic current. This observation is attributed to a mixture of photoinduced electron transfer reactions of opposing effects on the photocurrent directions in the two‐photosystem assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号