首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1843篇
  免费   75篇
  国内免费   4篇
电工技术   21篇
综合类   1篇
化学工业   409篇
金属工艺   53篇
机械仪表   47篇
建筑科学   55篇
矿业工程   15篇
能源动力   49篇
轻工业   84篇
水利工程   17篇
石油天然气   34篇
无线电   129篇
一般工业技术   508篇
冶金工业   175篇
原子能技术   73篇
自动化技术   252篇
  2023年   17篇
  2022年   37篇
  2021年   63篇
  2020年   40篇
  2019年   43篇
  2018年   48篇
  2017年   68篇
  2016年   60篇
  2015年   61篇
  2014年   75篇
  2013年   131篇
  2012年   101篇
  2011年   125篇
  2010年   77篇
  2009年   72篇
  2008年   104篇
  2007年   103篇
  2006年   74篇
  2005年   62篇
  2004年   47篇
  2003年   61篇
  2002年   52篇
  2001年   28篇
  2000年   27篇
  1999年   18篇
  1998年   22篇
  1997年   24篇
  1996年   18篇
  1995年   13篇
  1994年   22篇
  1993年   18篇
  1992年   12篇
  1991年   11篇
  1990年   12篇
  1989年   17篇
  1987年   10篇
  1986年   7篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   7篇
  1979年   13篇
  1978年   6篇
  1977年   9篇
  1976年   7篇
  1975年   7篇
  1973年   7篇
  1971年   10篇
  1970年   6篇
排序方式: 共有1922条查询结果,搜索用时 46 毫秒
71.
Russian Engineering Research - The interaction of an ultrasonic probe with a vibrating boundary surface is considered in a quasi-static approximation. A model of boundary-problem type is expressed...  相似文献   
72.
We demonstrated the fabrication of freestanding zeolitic imidazolate framework 7 (ZIF‐7) nanofiber (NF) mats by means of one‐step, scalable electrospinning. The formation of ZIF‐7 nanoparticles embedded in polymer fibers was unambiguously pinpointed via X‐ray diffraction, transmission electron microscopy, and adsorption studies. The NF mats exhibited excellent characteristics, with an average diameter of 245 nm, in the adsorption and desorption of carbon dioxide (CO2); this makes them attractive candidates for gas separation and other selective filtration applications. This excellent property of the ZIF‐7 mats was explained by the gate‐opening phenomenon of ZIF‐7, which yielded a stepwise increase in the overall CO2 uptake capacity. The mechanical strength of the NF mats was also obtained via large‐strain uniaxial tensile deformation, which enabled preliminary assessment of the mat's suitability for textiles and membranes in targeting separation and filtration applications with large‐area permeability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43788.  相似文献   
73.
Microneedles are small needle‐like structures that are almost invisible to the naked eye. They have an immense potential to serve as a valuable tool in many medical applications, such as painless vaccination. Microneedles work by breaking through the stratum corneum, the outermost barrier layer of the skin, and providing a direct path for drug delivery into the skin. A lot of research has been presented over the past two decades on the applications of microneedles, yet the fundamental mechanism of how they interact, pressure, and penetrate the skin in its native state is worth examining further. As such, a major difficulty with understanding the mechanism of microneedle–skin interaction is the lack of an artificial mechanical human skin model to use as a standardized substrate. In this research news, the development of an artificial mechanical skin model based on a thorough mechanical study of fresh human and porcine skin samples is presented. The artificial mechanical skin model can be used to study the mechanical interactions between microneedles and skin, but not diffusion of molecules across skin. This model can assist in improving the performance of microneedles by enhancing the reproducibility of microneedle depth insertions for optimal drug delivery and biosensing.

  相似文献   

74.
Titov  V. N.  Ternovikh  A. I.  Baranov  P. V.  Sidorova  T. Yu. 《Metallurgist》2021,65(3-4):439-445
Metallurgist - A coating based on boron carbide, aluminum oxide slip, and also aluminosilicate adhesive is used to improve the service properties of Cu–Al diffusion layer on blast furnace air...  相似文献   
75.
76.
Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a group of parasitoids that parasitize the larvae and pupae of other parasitoids, is more constrained. Their hosts do not feed on plants, and often are even concealed inside the body of the herbivore host. Hyperparasitoids recently have been found to use HIPVs of plants damaged by herbivore hosts in which the parasitoid larvae develop. However, hyperparasitoids that search for these parasitoid larvae may be confronted with healthy and parasitized caterpillars on the same plant, further complicating their host location. In this study, we addressed whether the primary hyperparasitoid Baryscapus galactopus uses caterpillar body odors to discriminate between unparasitized herbivores and herbivores carrying larvae of parasitoid hosts. We show that the hyperparasitoids made faster first contact and spent a longer mounting time with parasitized caterpillars. Moreover, although the three parasitoid hosts conferred different fitness values for the development of B. galactopus, the hyperparasitoids showed similar behavioral responses to caterpillar hosts carrying different primary parasitoid hosts. In addition, a two-chamber olfactometer assay revealed that volatiles emitted by parasitized caterpillars were more attractive to the hyperparasitoids than those emitted by unparasitized caterpillars. Analysis of volatiles revealed that body odors of parasitized caterpillars differ from unparasitized caterpillars, allowing the hyperparasitoids to detect their parasitoid host.  相似文献   
77.

One dimensional (1D) nanostructures attract considerable attention, enabling a broad application owing to their unique properties. However, the precise mechanism of 1D morphology attainment remains a matter of debate. In this study, ultrafast picosecond (ps) laser-induced treatment on upconversion nanoparticles (UCNPs) is offered as a tool for 1D-nanostructures formation. Fragmentation, reshaping through recrystallization process and bioadaptation of initially hydrophobic (β-Na1.5Y1.5F6: Yb3+, Tm3+/β-Na1.5Y1.5F6) core/shell nanoparticles by means of one-step laser treatment in water are demonstrated. “True” 1D nanostructures through “Medusa”-like structures can be obtained, maintaining anti-Stokes luminescence functionalities. A matter of the one-dimensional UCNPs based on direction of energy migration processes is debated. The proposed laser treatment approach is suitable for fast UCNP surface modification and nano-to-nano transformation, that open unique opportunities to expand UCNP applications in industry and biomedicine.

  相似文献   
78.
Protein–protein interactions (PPIs) play an important role in many biological processes in a living cell. Among them chaperone–client interactions are the most important. In this work PPIs of αB-crystallin and glycogen phosphorylase b (Phb) in the presence of betaine (Bet) and arginine (Arg) at 48 °C and ionic strength of 0.15 M were studied using methods of dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation. It was shown that Bet enhanced, while Arg reduced both the stability of αB-crystallin and its adsorption capacity (AC0) to the target protein at the stage of aggregate growth. Thus, the anti-aggregation activity of αB-crystallin increased in the presence of Bet and decreased under the influence of Arg, which resulted in inhibition or acceleration of Phb aggregation, respectively. Our data show that chemical chaperones can influence the tertiary and quaternary structure of both the target protein and the protein chaperone. The presence of the substrate protein also affects the quaternary structure of αB-crystallin, causing its disassembly. This is inextricably linked to the anti-aggregation activity of αB-crystallin, which in turn affects its PPI with the target protein. Thus, our studies contribute to understanding the mechanism of interaction between chaperones and proteins.  相似文献   
79.
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.  相似文献   
80.
A synchrotron radiation based technique is use to study the density distribution at the detonation front and its neighborhood for condensed explosives. Particular data are obtained on the structure of the detonation front in TNT, RDX, and an alloy of TNT with RDX; a comparison of the data with those obtained using different techniques confirms the correctness of the technique. It is concluded that adequate information on the structure of the chemical-reaction zone can be obtained for charges of small diameter. At the same time, it is shown that the Chapman-Jouguet parameters for such charges are far from their predicted values for an infinite medium. The results of the work, including those on the curvature of the detonation front in charges of small diameter, supplement the existing knowledge of the detonation transformation in condensed explosives. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 2, pp. 91–99, March–April, 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号