首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8928篇
  免费   746篇
  国内免费   16篇
电工技术   121篇
综合类   15篇
化学工业   2148篇
金属工艺   350篇
机械仪表   432篇
建筑科学   135篇
矿业工程   3篇
能源动力   349篇
轻工业   915篇
水利工程   35篇
石油天然气   7篇
武器工业   1篇
无线电   1525篇
一般工业技术   2105篇
冶金工业   594篇
原子能技术   83篇
自动化技术   872篇
  2024年   11篇
  2023年   134篇
  2022年   196篇
  2021年   330篇
  2020年   231篇
  2019年   232篇
  2018年   315篇
  2017年   337篇
  2016年   406篇
  2015年   354篇
  2014年   463篇
  2013年   640篇
  2012年   649篇
  2011年   843篇
  2010年   587篇
  2009年   550篇
  2008年   448篇
  2007年   391篇
  2006年   323篇
  2005年   259篇
  2004年   263篇
  2003年   220篇
  2002年   165篇
  2001年   153篇
  2000年   157篇
  1999年   137篇
  1998年   230篇
  1997年   127篇
  1996年   105篇
  1995年   57篇
  1994年   64篇
  1993年   46篇
  1992年   36篇
  1991年   23篇
  1990年   23篇
  1989年   24篇
  1988年   16篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   10篇
  1983年   11篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1977年   7篇
  1976年   9篇
  1974年   7篇
  1971年   7篇
  1970年   6篇
排序方式: 共有9690条查询结果,搜索用时 0 毫秒
951.
In recent years, medical service has been evolving from systems designed around centralized hospitals to Ubiquitous Healthcare (U‐Healthcare). U‐Healthcare system can facilitate real‐time monitoring of patient states, and can provide medical checkups and management whenever and wherever the medical staff deems necessary. U‐Healthcare services can provide chronic condition monitoring in the early stages of diseases and help execute decisive medical action in emergencies. However, thus far, the application of U‐Healthcare systems has been limited to diseases such as obesity, diabetes, etc. Acute myocardial infarction (AMI) is among the most critical chronic diseases and requires early detection and treatment. In this paper, we propose an AMI diagnostic software technique and protocol that can support real‐time communication between the patient and medical personnel. Our monitoring and diagnostic system has been developed using a protocol based on ISO/IEEE 11073. When data is transferred from the patient's smartphone to a server in hospital, the medical personnel consult the patient's biosensor data to determine the status of the relevant disease and provide appropriate medical service. The relevant information is sent back to the patient's smartphone through a wireless network, and patients can view their data in graphical format through their smartphone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
952.
Vitamins are non‐toxic compounds that perform a variety of biological functions and also available in a large quantity. Other than the usage as food supplements, few attempts have been made to use them as functional materials. In this study, we report that vitamin B6, pyridoxal 5′‐phosphate (PLP), is a multi‐functional molecule for oxide surface chemistry. PLP‐immobilized surfaces exhibit superhydrophilicity and even hemophilicity, enhancing proliferation, migration, and differentiation of mammalian cells. Unlike existing molecules used so far in surface modification, PLP has an intrinsic chemical reactivity toward biomacromolecules due to the presence of the aldehyde group. In fact, RGD peptide is covalently tethered onto PLP surfaces directly in one step without any chemical activation. Furthermore, PLP‐functionalized implant device showed rapid bone healing. As vitamin B6 is a FDA approved molecule for human usage, the surface chemistry of vitamin B6 potentially allows a fast route for surface functionalized medical devices into clinic.  相似文献   
953.
Biodegradable substrates and encapsulating materials play critical roles in the development of an emerging class of semiconductor technology, generally referred as “transient electronics”, whose key characteristic is an ability to dissolve completely, in a controlled manner, upon immersion in ground water or biofluids. The results presented here introduce the use of thin foils of Mo, Fe, W, or Zn as biodegradable substrates and silicate spin‐on‐glass (SOG) materials as insulating and encapsulating layers, with demonstrations of transient active (diode and transistor) and passive (capacitor and inductor) electronic components. Complete measurements of electrical characteristics demonstrate that the device performance can reach levels comparable to those possible with conventional, nontransient materials. Dissolution kinetics of the foils and cytotoxicity tests of the SOG yield information relevant to use in transient electronics for temporary biomedical implants, resorbable environmental monitors, and reduced waste consumer electronics.  相似文献   
954.
955.
956.
Nanoscale patterning with massively parallel 2D array tips is of significant interest in scanning probe lithography. A challenging task for tip‐based large area nanolithography is maintaining parallel tip arrays at the same contact point with a sample substrate in order to pattern a uniform array. Here, polymer pen lithography is demonstrated with a novel leveling method to account for the magnitude and direction of the total applied force of tip arrays by a multipoint force sensing structure integrated into the tip holder. This high‐precision approach results in a 0.001° slope of feature edge length variation over 1 cm wide tip arrays. The position sensitive leveling operates in a fully automated manner and is applicable to recently developed scanning probe lithography techniques of various kinds which can enable “desktop nanofabrication.”  相似文献   
957.
The electroplating characteristics and deposition layer of a Sn-Bi eutectic alloy applicable to low-temperature soldering were investigated. A methane sulphonate electrolyte was fabricated and the current density was focused in order to achieve an eutectic Sn-Bi composition. The electroplating characteristics, including the polarization curve and deposition thickness with plating time, were also studied. As experimental results, a polarization curve showed a Sn-Bi codeposition occurred under a −0.5 V electropotential. The Bi content in the Sn-Bi deposit decreased with an increasing current density, such as 99.42 wt.% for −10 mA/cm2 and 42.27 wt.% for −40 mA/cm2. The thickness of the electroplated layer increased with the plating time, while a relatively uniform thickness was obtained in a short plating time, such as less than 40 min. The eutectic deposition of Sn-58.2 wt.%Bi was successfully fabricated by plating at −30 mA/cm2 for 30 min.  相似文献   
958.
To enhance the performance of a polymer electrolyte membrane fuel cell (PEMFC), a Pt catalyst was supported on carbon nanotubes (CNTs) and the optimum content of Nafion ionomer in the Pt/CNT electrode was examined by cell performance tests, cyclic voltammetry, and electrochemical impedance spectroscopy. The amount of the Pt catalyst supported on the CNTs was 34 wt.%. The Nafion content significantly changed the protonic and electronic conductivities as well as the mass transfer properties. As such, the performance of the cell was highly dependent on the content of Nafion ionomer. The results of the cell performance tests revealed that the optimum content of Nafion ionomer in the Pt/CNT electrode was about 20 wt.%.  相似文献   
959.
Tensile tests were used to investigate the effect of grain size on the strain-induced martensitic transformation start temperature in metastable austenitic steel with special attention to ultrafine grain size. The austenite grains were refined to submicron size by the strain-induced martensite and its reverse transformations (SIMRT), which occurred during a conventional cold rolling and annealing process. The start temperature of the straininduced martensitic transformation was linearly lowered with a decrease in austenite grain size, even down to submicron grain sizes. This result is due to the decrease in grain size causing an increase in the temperature dependency of the strain-induced martensitic transformation and higher austenite stability brought about by grain refinement.  相似文献   
960.
Active vibration control to suppress structural vibration of the smart hull structure was investigated based on optimized actuator configurations. Advanced anisotropic piezoelectric composite actuator, Macro-Fiber Composite (MFC), was used for the vibration control. Governing equations of motion of the smart hull structure including MFC actuators were obtained using the Donnell-Mushtari shell theory and Lagrange's equation. The Rayleigh-Ritz method was used to obtain the dynamic characteristics of the smart hull structure. Experimental modal tests were conducted to verify the proposed mathematical model. In order to achieve high control performance, optimal locations and directions of the MFC actuators were determined by genetic algorithm. Optimal control algorithm was then synthesized to suppress structural vibration of the proposed smart hull structure and experimentally implemented to the system. Active vibration control performances were evaluated under various modes excitations. Vibration tests revealed that optimal configurations of MFC actuators improved the control performance of the smart hull structure in case of the limited number of actuators available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号