首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50818篇
  免费   2567篇
  国内免费   160篇
电工技术   730篇
综合类   79篇
化学工业   10894篇
金属工艺   2174篇
机械仪表   3340篇
建筑科学   1139篇
矿业工程   33篇
能源动力   2148篇
轻工业   3944篇
水利工程   274篇
石油天然气   101篇
武器工业   2篇
无线电   8050篇
一般工业技术   10879篇
冶金工业   3904篇
原子能技术   669篇
自动化技术   5185篇
  2024年   51篇
  2023年   578篇
  2022年   887篇
  2021年   1504篇
  2020年   1083篇
  2019年   1204篇
  2018年   1463篇
  2017年   1443篇
  2016年   1781篇
  2015年   1337篇
  2014年   2143篇
  2013年   3085篇
  2012年   3339篇
  2011年   3989篇
  2010年   2894篇
  2009年   3016篇
  2008年   2895篇
  2007年   2235篇
  2006年   2087篇
  2005年   1775篇
  2004年   1617篇
  2003年   1547篇
  2002年   1366篇
  2001年   1158篇
  2000年   1024篇
  1999年   951篇
  1998年   1575篇
  1997年   1006篇
  1996年   814篇
  1995年   566篇
  1994年   473篇
  1993年   410篇
  1992年   299篇
  1991年   278篇
  1990年   265篇
  1989年   244篇
  1988年   208篇
  1987年   172篇
  1986年   123篇
  1985年   116篇
  1984年   95篇
  1983年   65篇
  1982年   38篇
  1981年   39篇
  1980年   30篇
  1979年   31篇
  1978年   31篇
  1977年   39篇
  1976年   61篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The fabrication of a flexible field‐emission device (FED) using single‐walled carbon nanotube (SWNT) network films as the conducting electrodes (anode and cathode) and thin multi‐walled CNT/TEOS hybrid films as the emitters is reported. P‐type doping with gold ions and passivation with tetraethylorthosilicate (TEOS) made the SWNT network film highly conductive and environmentally stable, and hence a good alternative to conventional indium tin oxide electrodes. CNT/TEOS hybrid emitters showed high current density, low turn‐on field, and long‐term emission stability, compared with CNT emitters; these characteristics can be attributed to the TEOS sol, acting both as a protective layer surrounding the nanotube tip, and as an adhesive layer enhancing the nanotube adhesion to the substrate. All‐CNT‐based flexible FEDs fabricated by this approach showed high flexibility in field emission characteristics and extremely bright electron emission patterns.  相似文献   
992.
Hexagonally arrayed structures of colloidal crystals with uniform surface are a good candidate for master molds to be used in soft lithography. Here, the fabrication of periodically arrayed nanostructures using poly(dimethylsiloxane) (PDMS) molds based on three‐dimensionally (3D) ordered colloidal crystals is reported. A robust, high‐quality 3D colloidal‐crystal master molds is prepared using the colloidal suspension containing a water‐soluble polymer. The surface patterns of the 3D colloidal crystals can then be transferred onto a polymer film via soft lithography, by means of the replication of the surface pattern with PDMS. Various hexagonally arrayed nanostructure patterns can be fabricated, including close‐packed and non‐close‐packed 2D arrays and honeycomb structures by the structural modification of the 3D colloidal‐crystal templates. The replicated hexagonally arrayed structures can also be used as templates for producing colloidal crystals with 2D superlattices.  相似文献   
993.
We introduce an advanced terrestrial digital multimedia broadcasting (AT‐DMB) system that overcomes the limitation of data transmission rates of T‐DMB by doubling it with the same frequency bandwidth. In this letter, we propose an efficient algorithm which generates a scalable transport stream in AT‐DMB by multiplexing certain types of elementary streams encoded using scalable video coding and an MPEG‐surround audio coder for high‐quality multimedia services.  相似文献   
994.
This paper presents an improved sensorless driving method for switched reluctance motor (SRM) using a phase-shift circuit technique. The conventional method consists of impressing short voltage pulses during unenergized phases, measuring the phase current pulses, and finding the correlation between the filtered current signals and rotor position. However, the filtering process causes a signal phase delay which varies with motor speed. This delay must be compensated for in providing the sensorless signal which is proper to the rotor position. A solution for this phase delay compensation, based on a simple analog and digital circuit, is proposed in this paper.  相似文献   
995.
Solution processable organic thin-film transistors (OTFTs) were fabricated using 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) and low-temperature processable polyimide gate dielectric. The TIPS-pentacene OTFT with the dielectric was found to have a field-effect mobility of 0.15 cm2/Vs, which is comparable to that of OTFT with an inorganic dielectric. The OTFTs with the polyimide dielectric did not show any significant performance degradation as time passed. A field-effect mobility of the OTFTs in 60 days was found to be almost identical to that of pristine OTFT. The combination of TIPS-pentacene and our polyimide gate dielectric can be one of the potential candidates for the fabrication of stable OTFTs for large-area flexible electronics.  相似文献   
996.
We suggest a novel method for treating the surfaces of dielectric layers in organic field effect transistors (OFETs). In this method, a blend of poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and dimethylsiloxane (DMS) with a curing agent is spin coated onto the surface of a dielectric substrate, silicon oxide (SiO2), and then thermally cured. X-ray photoelectron spectroscopy, contact angle measurements, and morphology analysis were used to show that the hydrophilic DMS layer is preferentially adsorbed on the SiO2 substrate during the spin coating process. After thermal curing, the bottom DMS layer becomes a hydrophobic PDMS layer. This bottom PDMS layer becomes thinner during curing due to the upward motion of the hydrophobic PDMS molecules. The FET mobility of the cured system was 10?2 cm2/Vs, which is similar to that of polymeric semiconductors on octadecyltrichlorosilane treated SiO2 dielectric layers. We also discuss the possibility of using this blend method to increase the air-stability of polymeric semiconductors.  相似文献   
997.
In ad hoc networks, the spatial reuse property limits the number of packets which can be spatially transmitted over a path. In standard Transmission Control Protocol (TCP), however, a TCP sender keeps transmitting packets without taking into account this property. This causes heavy contention for the wireless channel, resulting in the performance degradation of TCP flows. Hence, two techniques have been proposed independently in order to reduce the contention. First, a TCP sender utilizes a congestion window limit (CWL), by considering the spatial reuse property. This prevents the TCP sender from transmitting more than CWL number of packets at one time. Second, a delayed ack (DA) strategy is exploited in order to mitigate the contention between the TCP ACK and DATA packets. Recently, although TCP‐DAA (Dynamic Adaptive Acknowledgment) attempts to utilize a CWL‐based DA strategy, TCP‐DAA overlooks a dynamic correlation between these two techniques. This paper, therefore, reveals the dynamic correlation and also proposes a protocol which not only reduces the frequency of the TCP ACK transmissions but also determines a CWL value dynamically, according to network conditions. Simulation studies show that our protocol performs the best in various scenarios, as compared to TCP‐DAA and standard TCP (such as TCP‐NewReno). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
998.
System-on-chip (SoC) integrated circuits are designed and fabricated with multiple levels of hierarchy. However, most previous works on wrapper design, test access mechanism optimization and test scheduling did not take care of the hierarchy properly, thus the corresponding test schedules were often invalid for SoCs with hierarchical cores. We propose a low-area wrapper cell design which can treat SoCs with hierarchy properly and allows simultaneous testing of parent and child cores. The proposed cell uses 13%∼23% less area than a recently proposed cell design in equivalent gate count. As a result we achieve up to 21% area reduction for hierarchical ITC ’02 SoCs compared to the most recently proposed designs.  相似文献   
999.
Topology control is one of the important techniques in wireless multi-hop networks to preserve connectivity and extend the network lifetime. This is more significant in ZigBee, since the address assignment scheme is tightly coupled with topology construction. For example, there can be orphan nodes that cannot receive the network address and isolated from the network due to predefined network configurations. In this paper, we propose a distributed topology construction algorithm that controls the association time of each node in order to solve the orphan node problem in ZigBee as well as construct an efficient routing tree topology. The main idea of the distributed topology construction algorithm is to construct primary backbone nodes by propagating the invitation packets and controlling the association time based on the link quality. Since the dynamically selected primary nodes are spread throughout the network, they can provide backbone to accept the association requests from the remaining secondary nodes which are majority in a network. In the performance evaluation, we show that the proposed topology construction algorithm effectively solves the orphan node problem regardless of network density as well as provides efficient tree routing cost comparable to the approximation algorithm for degree constrained minimum routing cost tree (DC-MRCT) problem.  相似文献   
1000.
Ionic soft actuators, which exhibit large mechanical deformations under low electrical stimuli, are attracting attention in recent years with the advent of soft and wearable electronics. However, a key challenge for making high‐performance ionic soft actuators with large bending deformation and fast actuation speed is to develop a stretchable and flexible electrode having high electrical conductivity and electrochemical capacitance. Here, a functionally antagonistic hybrid electrode with hollow tubular graphene meshes and nitrogen‐doped crumpled graphene is newly reported for superior ionic soft actuators. Three‐dimensional network of hollow tubular graphene mesh provides high electrical conductivity and mechanically resilient functionality on whole electrode domain. On the contrary, nitrogen‐doped wrinkled graphene supplies ultrahigh capacitance and stretchability, which are indispensably required for improving electrochemical activity in ionic soft actuators. Present results show that the functionally antagonistic hybrid electrode greatly enhances the actuation performances of ionic soft actuators, resulting in much larger bending deformation up to 620%, ten times faster rise time and much lower phase delay in a broad range of input frequencies. This outstanding enhancement mostly attributes to exceptional properties and synergistic effects between hollow tubular graphene mesh and nitrogen‐doped crumpled graphene, which have functionally antagonistic roles in charge transfer and charge injection, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号