首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21517篇
  免费   1631篇
  国内免费   41篇
电工技术   138篇
综合类   116篇
化学工业   5861篇
金属工艺   459篇
机械仪表   384篇
建筑科学   750篇
矿业工程   59篇
能源动力   659篇
轻工业   5091篇
水利工程   200篇
石油天然气   171篇
武器工业   1篇
无线电   973篇
一般工业技术   3312篇
冶金工业   2024篇
原子能技术   117篇
自动化技术   2874篇
  2024年   39篇
  2023年   169篇
  2022年   688篇
  2021年   907篇
  2020年   567篇
  2019年   650篇
  2018年   816篇
  2017年   838篇
  2016年   865篇
  2015年   656篇
  2014年   979篇
  2013年   1804篇
  2012年   1462篇
  2011年   1584篇
  2010年   1200篇
  2009年   1137篇
  2008年   1034篇
  2007年   917篇
  2006年   741篇
  2005年   564篇
  2004年   507篇
  2003年   532篇
  2002年   445篇
  2001年   356篇
  2000年   293篇
  1999年   289篇
  1998年   798篇
  1997年   517篇
  1996年   370篇
  1995年   256篇
  1994年   210篇
  1993年   152篇
  1992年   82篇
  1991年   57篇
  1990年   55篇
  1989年   57篇
  1988年   63篇
  1987年   50篇
  1986年   35篇
  1985年   55篇
  1984年   44篇
  1983年   43篇
  1982年   38篇
  1981年   26篇
  1980年   42篇
  1979年   22篇
  1978年   20篇
  1977年   30篇
  1976年   54篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
This contribution provides insight on the elimination of heavy metals from water resources using magnetic separation. Nanocomposites based on magnetite and chitosan were prepared. An exhaustive characterization of the magnetic adsorbents was developed. Adsorption assays were performed in batch using Cu, Zn, Cd, and Cr as model heavy metals. The efficiency of magnetic adsorbents followed the order: Cu > Cd > Zn > Cr, with maximum values of 188, 159, 72, and 46 mg of Me/g of nanocomposite, respectively. Kinetics and mechanistic issues were studied. The magnetic materials were efficient for five to eight cycles using Cu(II),Cd(II), and Cr(VI).  相似文献   
962.
Osmotic dehydration assisted by ultrasound (ODAU) at low temperatures reduces water activity (aw) and maintains nutrients. The influence of solution concentration (SC; 20 to 60° Brix, xylitol and sorbitol) and ultrasound application time (tus, 0 to 40 min) in ODAU of yacon was studied with the aid of a response surface method. The optimum condition with respect to mass transfer parameters, aw, and fructan retention was SC of 60° Brix for both solutions and tus of 2.67 min for xylitol samples and 0 min for sorbitol samples. The application of ultrasound improved dehydration but resulted in depolymerization of fructans.  相似文献   
963.
Poly(lactic acid) (PLA) was impregnated in bacterial cellulose (BC) membranes. BC/PLA films were prepared by solvent casting and mechanical, optical and barrier properties, and biodegradation process were investigated. The transparency of processed films was higher than that of neat BC and increased with PLA content. Moreover, the incorporation of PLA to BC enhanced significantly the water vapor barrier properties of the BC membranes. The bionanocomposites contained a high percentage of cellulose due to the impregnation method that leads to the film with a BC content of 94%, which practically maintains the excellent mechanical properties of BC. However, when increasing the PLA content in the bionanocomposites the mechanical properties decreased slightly with respect to BC. Biodegradation under real soil conditions was determined indirectly through the study of the visual degradation and disintegration, demonstrating that the bionanocomposites were degraded faster than the neat PLA. The successful production of BC/PLA bionanocomposites suggested the possible application of them for active food packaging. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43669.  相似文献   
964.
The development and characterization of biodegradable polymers deriving from renewable natural sources has attracted much attention. The aim of this work was to partially characterize a thermoplastic starch obtained from the starch of seeds from the ramon tree (TPS‐RS) as an option to substitute thermoplastic starch from corn (TPS‐CS), in some of its applications. At 55% of relative humidity (RH), TPS‐RS had higher tensile strength and deformation than TPS‐CS. X‐ray diffraction analysis showed similar values in residual crystallinity (percentage of crystallinity that remains after plasticization process) in both TPS. The SEM micrographs showed a few remnant granular structures in the TPS‐RS. The FTIR showed a greater intensity in band at 1016 cm?1 in the TPS‐CS and TPS‐RS in comparison with their corresponding native starch, indicating an increase in the amorphous region after plasticization. The TGA analysis showed greater thermal stability in TPS‐CS (340 °C) compared with TPS‐RS (327 °C). In addition, the glass transition temperature in both TPS was 24 °C. The results obtained represent a starting point to potentialize the use of TPS‐RS instead of TPS‐CS for the development of new biodegradable materials for practical applications in different areas. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44235.  相似文献   
965.
The catabolism and structure of high‐density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A‐I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL‐apo A‐I was evaluated by exogenous radiolabelling with iodine‐131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P < 0.001) associated with increased uremia, creatininemia, and cardiotoxicity. Large HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol‐to‐phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [131I]‐apo A‐I in the proteinuric rabbits was faster (FCR = 0.036 h?1) compared to control rabbits group (FCR = 0.026 h?1, P < 0.05). Apo E increased and apo A‐I decreased in HDL, whereas PON‐1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase‐1 activity, and a rise in the fractional catabolic rate of the [131I]‐apo A‐I.  相似文献   
966.
One of the challenges in membrane technology is predicting permeability in porous membranes for liquid applications in an easy and inexpensive way. This is the aim of this work. To achieve this objective, several techniques can be considered. In this study, a morphological approach from two‐dimensional scanning electron micrographs is proposed. First, numerical membrane morphological parameters have been determined from micrographs by using the QUANTS tool, which applies a texture recognition process. Second, the obtained data have been fit to the Darcy's and Hagen–Poiseuille models to calculate permeations. The QUANTS results have also been compared with the ones obtained through a mercury porosimeter, which is a classic and well‐known methodology. Each parameter of the Hagen–Poiseuille model has been analyzed. A comparison between experimentally measured permeations and calculated ones has been performed. An even easier approach is proposed to predict flow rate with the only knowledge of membrane surface mean pore size. This method is based on cross‐section pore size interpolation by using function fits from surface mean pore sizes. The obtained results show a reasonable agreement between measured and computed results, making this technique a valid approach for predicting membrane permeability. POLYM. ENG. SCI., 56:118–124, 2016. © 2015 Society of Plastics Engineers  相似文献   
967.
The influence of processing parameters such as screw geometry, temperature profile, and screw speed on the electrical properties of hybrid composites consisting of graphite nanoplatelets and carbon black in ethyl butyl acrylate was studied. Two different screws were used to compound the hybrid composites at two different temperatures and two different screw speeds. A beneficial effect was noted with regard to the electrical properties when adding nanoplatelets to the filler system. The cause could be a synergistic effect due to the difference in particle shape of the two fillers. Lower percolation thresholds were obtained with the conventional screw due to less breakage of the graphite nanoplatelets compared to the barrier screw. No significant changes of the electrical properties were observed when changing the temperature profiles or the screw speeds. Furthermore, the melt viscosity of the compounds was not appreciably affected at the rather low filler contents used here. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42897.  相似文献   
968.
We present a strategy for stabilizing the morphological integrity of electrospun polymeric nanofibers by heat stimuli in situ crosslinking. Amorphous polymer nanofibers, such as polystyrene (PS) and its co‐polymers tend to lose their fiber morphology during processing at temperatures above their glass transition temperature (Tg) typically bound to happen in nanocomposite/structural composite applications. As an answer to this problem, incorporation of the crosslinking agents, phthalic anhydride (PA) and tributylamine (TBA), into the electrospinning polymer solution functionalized by glycidylmethacrylate (GMA) copolymerization, namely P(St‐co‐GMA), is demonstrated. Despite the presence of the crosslinker molecules, the electrospinning polymer solution is stable and its viscosity remains unaffected below 60 °C. Crosslinking reaction stands‐by and can be thermally stimulated during post‐processing of the electrospun P(St‐co‐GMA)/PA‐TBA fiber mat at intermediate temperatures (below the Tg). This strategy enables the preservation of the nanofiber morphology during subsequent high temperature processing. The crosslinking event leads to an increase in Tg of the base polymer by 30 °C depending on degree of crosslinking. Crosslinked nanofibers are able to maintain their nanofibrous morphology above the Tg and upon exposure to organic solvents. In situ crosslinking in epoxy matrix is also reported as an example of high temperature demanding application/processing. Finally, a self‐same fibrous nanocomposite is demonstrated by dual electrospinning of P(St‐co‐GMA) and stabilized P(St‐co‐GMA)/PA‐TBA, forming an intermingled nanofibrous mat, followed by a heating cycle. The product is a composite of crosslinked P(St‐co‐GMA)/PA‐TBA fibers fused by P(St‐co‐GMA) matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44090.  相似文献   
969.
Highly ordered honeycomb‐patterned polystyrene surfaces are efficiently prepared by static breath figure method. The structured arrays can be obtained by casting a dilute solution polymer on glass substrates under various conditions. Tetrahydrofuran and chloroform are used as solvent to form cavities of several micrometers. The analysis of the surfaces indicates nonlinear relation between concentration and pore size in this system. Voronoi tessellations of the polystyrene surfaces at different relative humidity (RH) are achieved, and each conformational entropy determined. Optimum parameters of concentration and RH are obtained for both solvents. Analysis of hole size distribution and conformational entropy demonstrates the high order of the films obtained. This is a promising method for the fabrication of homogeneous and highly porous films from polystyrene. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44004.  相似文献   
970.
Grafting of maleic anhydride onto polypropylene was performed in a Haake torque rheometer, in the presence of organically modified montmorillonite, MMT (used as support for the peroxide), according to a 23 factorial design, where the maleic anhydride concentration (CMA), peroxide concentration (Cper) and reaction time (tr) were varied. For comparison, the reaction in the absence of MMT was also conducted. Polypropylene degradation was assessed by parallel plate rheometry and size exclusion chromatography (SEC) and percentage of reacted maleic anhydride (%MAg) was obtained by titration and FTIR spectroscopy. The results showed differences in both systems, conventional and in the presence of MMT. The structure of polypropylene grafted with maleic anhydride, PP‐g‐MA, indicates longer branches are formed in the presence of MMT compared to in its absence, demonstrated by FTIR analysis. As in conventional reaction systems, an increase in Cper caused an increase in %MAg and a reduction in molar mass. The variable CMA showed to be not significant in the grafting reaction in the presence of MMT, even at high DCP levels, at a 5% significance level. On the other hand, increase in CMA resulted in significant increase in viscosity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44134.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号