首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6638篇
  免费   505篇
  国内免费   8篇
电工技术   79篇
综合类   2篇
化学工业   1898篇
金属工艺   125篇
机械仪表   203篇
建筑科学   286篇
矿业工程   24篇
能源动力   263篇
轻工业   975篇
水利工程   60篇
石油天然气   35篇
无线电   414篇
一般工业技术   1048篇
冶金工业   319篇
原子能技术   47篇
自动化技术   1373篇
  2024年   18篇
  2023年   82篇
  2022年   209篇
  2021年   311篇
  2020年   209篇
  2019年   231篇
  2018年   278篇
  2017年   292篇
  2016年   279篇
  2015年   233篇
  2014年   315篇
  2013年   575篇
  2012年   450篇
  2011年   553篇
  2010年   381篇
  2009年   411篇
  2008年   346篇
  2007年   320篇
  2006年   266篇
  2005年   202篇
  2004年   151篇
  2003年   165篇
  2002年   135篇
  2001年   76篇
  2000年   83篇
  1999年   66篇
  1998年   52篇
  1997年   61篇
  1996年   54篇
  1995年   42篇
  1994年   30篇
  1993年   32篇
  1992年   15篇
  1991年   22篇
  1990年   15篇
  1989年   20篇
  1988年   11篇
  1987年   11篇
  1986年   11篇
  1985年   15篇
  1984年   9篇
  1983年   8篇
  1982年   16篇
  1981年   6篇
  1980年   9篇
  1979年   10篇
  1978年   22篇
  1976年   9篇
  1975年   7篇
  1973年   5篇
排序方式: 共有7151条查询结果,搜索用时 15 毫秒
71.
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.  相似文献   
72.
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.  相似文献   
73.
Since 2010, several treatment options have been available for men with metastatic castration-resistant prostate cancer (mCRPC), including immunotherapeutic agents, although the clinical benefit of these agents remains inconclusive in unselected mCRPC patients. In recent years, however, immunotherapy has re-emerged as a promising therapeutic option to stimulate antitumor immunity, particularly with the use of immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 and CTLA-4 inhibitors. There is increasing evidence that ICIs may be especially beneficial in specific subgroups of patients with high PD-L1 tumor expression, high tumor mutational burden, or tumors with high microsatellite instability/mismatch repair deficiency. If we are to improve the efficacy of ICIs, it is crucial to have a better understanding of the mechanisms of resistance to ICIs and to identify predictive biomarkers to determine which patients are most likely to benefit. This review focuses on the current status of ICIs for the treatment of mCRPC (either as monotherapy or in combination with other drugs), mechanisms of resistance, potential predictive biomarkers, and future challenges in the management of mCRPC.  相似文献   
74.
Considering the high levels of materials used in the fields of electronics and energy storage systems, it is increasingly necessary to take into consideration environmental impact. Thus, it is important to develop devices based on environmentally friendlier materials and/or processes, such as additive manufacturing techniques. In this work, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) are prepared by direct-ink-writing (DIW) by varying solvent evaporation temperature and fill density percentage. Different morphologies for both polymers are obtained, including dense films and porous membranes, as well as different electroactive β-phase content, thermal and mechanical properties. The dielectric constant and piezoelectric d33 coefficient for dense films reaches up to 16 at 1 kHz and 4 pC N−1, respectively for PVDF-HFP with a fill density of 80 and a solvent evaporation temperature of 50 °C. Porous structures are developed for battery separator membranes in lithium-ion batteries, with a highest ionic conductivity value of 3.8 mS cm−1 for the PVDF-HFP sample prepared with a fill density of 100 and a solvent evaporation temperature of 25 °C, the sample showing an excellent cycling performance. It is demonstrated that electroactive films and membranes can be prepared by direct-ink writing suitable for sensors/actuators and energy storage systems.  相似文献   
75.
Coupling of side chain dynamics over long distances is an important component of allostery. Methionine side chains show the largest intrinsic flexibility among methyl-containing residues but the actual degree of conformational averaging depends on the proximity and mobility of neighboring residues. The 13C NMR chemical shifts of the methyl groups of methionine residues located at long distances in the same protein show a similar scaling with respect to the values predicted from the static X-ray structure by quantum methods. This results in a good linear correlation between calculated and observed chemical shifts. The slope is protein dependent and ranges from zero for the highly flexible calmodulin to 0.7 for the much more rigid calcineurin catalytic domain. The linear correlation is indicative of a similar level of side-chain conformational averaging over long distances, and the slope of the correlation line can be interpreted as an order parameter of the global side-chain flexibility.  相似文献   
76.
The stability of a rusted steel surface exposed to a 0.11 M sodium sulphate solution has been studied. Electrochemical impedance spectroscopy, polarization resistance and atomic absorption analysis techniques were used in conjunction with mild steel specimens rusted in a rural atmosphere and treated with different concentrations of phosphoric acid. Since most of the impedance diagrams obtained differ from the typical semicircle, it is not clear how to obtain kinetic information on the corrosion process. The polarization resistance technique gives more useful data.  相似文献   
77.
78.
The clearing of tropical rain forest in the Amazon basin has created large areas of cattle pasture that are now declining in productivity. Practices adopted by ranchers to restore productivity to degraded pastures have the potential to alter soil N availability and gaseous N losses from soils. We examined how soil inorganic N pools, net N mineralization and net nitrification rates, nitrification potential and NO and N2O emissions from soils of a degraded pasture responded to the following restoration treatments: (1) soil tillage followed by replanting of grass and fertilization, (2) no-till application of non-selective herbicide, planting of rice, harvest followed by no-till replanting of grass and fertilization, and (3) the same no-till sequence with soybeans instead of rice. Tillage increased soil NH4+ and NO3? pools but NH4+ and NO3? pools remained relatively constant in the control and no-till treatments. Cumulative rates of net N mineralization and net nitrification during the first 6 months after treatment varied widely but were hightest in the tilled treatment. Emissions of NO and N2O fluxes increased with tillage and with N fertilization. There were no clear relationships among rates of N fertilizer application, net N mineralization, net nitrification, NO, N2O and total N oxide emissions. Our results indicate that pasture restoration sequences involving tilling and fertilizing will increase emissions of N oxides, but the magnitude of the increase is likely to differ based on timing of fertilizer application relative to the presence of plants and the magnitude of plant N demand. Emissions of N oxides appear to be decreased by the use of restoration sequences that minimize reductions in pasture grass cover.  相似文献   
79.
An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work.

A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates.  相似文献   

80.
The electrochemical reduction of nitrate ion was studied by cyclic voltammetry on Pt(1 1 1) and [n(1 1 1) × (1 1 1)] stepped Pt surfaces, where n (=14, 10, 7, 6, 5, 4, 3, 2) is the number of terrace atoms, in 0.1 M HClO4 + 10 mM KNO3. The electrocatalytic nitrate reduction was found to hardly proceed on Pt(1 1 1) in the hydrogen adsorption region, while the electrocatalytic activity was improved with the increase in the step density. Inactivation was observed in the presence of adsorbed hydrogen or nitrate-derived reduced adsorbate, i.e. adsorbed NO, on (1 1 1) step sites. It was, therefore, concluded that the electrocatalytically active NO3 species does not adsorb on the (1 1 1) terraces but on the (1 1 1) monoatomic steps. The nitrate reduction current increased with the step density in a non-linear relationship. The overall current density at 0.21 V (RHE) corresponding to the peak potential of the main electrocatalytic nitrate reduction wave which was maximum at n = 2, abruptly increased with short terraces, i.e. n < 5, where the current wave of adsorbed hydrogen on the Pt stepped surface with comparatively narrow (1 1 1) terraces, denoted as Hnt, also appeared unmodified for n < 5 on voltammograms recorded in 0.1 M HClO4 in the absence of nitrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号