首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5974篇
  免费   363篇
  国内免费   1篇
电工技术   25篇
综合类   2篇
化学工业   2406篇
金属工艺   60篇
机械仪表   86篇
建筑科学   172篇
矿业工程   9篇
能源动力   124篇
轻工业   1523篇
水利工程   28篇
石油天然气   39篇
无线电   222篇
一般工业技术   801篇
冶金工业   241篇
原子能技术   12篇
自动化技术   588篇
  2024年   12篇
  2023年   95篇
  2022年   524篇
  2021年   486篇
  2020年   177篇
  2019年   182篇
  2018年   206篇
  2017年   215篇
  2016年   221篇
  2015年   186篇
  2014年   250篇
  2013年   392篇
  2012年   382篇
  2011年   431篇
  2010年   293篇
  2009年   322篇
  2008年   303篇
  2007年   265篇
  2006年   209篇
  2005年   174篇
  2004年   144篇
  2003年   106篇
  2002年   110篇
  2001年   67篇
  2000年   59篇
  1999年   66篇
  1998年   68篇
  1997年   64篇
  1996年   53篇
  1995年   41篇
  1994年   23篇
  1993年   32篇
  1992年   24篇
  1991年   17篇
  1990年   14篇
  1989年   20篇
  1988年   9篇
  1987年   8篇
  1986年   10篇
  1985年   4篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   11篇
  1980年   6篇
  1979年   9篇
  1978年   4篇
  1975年   3篇
  1974年   3篇
  1971年   4篇
排序方式: 共有6338条查询结果,搜索用时 15 毫秒
21.
Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-β4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.  相似文献   
22.
Background: ICOS and its ligand ICOSL are immune receptors whose interaction triggers bidirectional signals that modulate the immune response and tissue repair. Aim: The aim of this study was to assess the in vivo effects of ICOSL triggering by ICOS-Fc, a recombinant soluble form of ICOS, on skin wound healing. Methods: The effect of human ICOS-Fc on wound healing was assessed, in vitro, and, in vivo, by skin wound healing assay using ICOS−/− and ICOSL−/− knockout (KO) mice and NOD-SCID-IL2R null (NSG) mice. Results: We show that, in wild type mice, treatment with ICOS-Fc improves wound healing, promotes angiogenesis, preceded by upregulation of IL-6 and VEGF expression; increases the number of fibroblasts and T cells, whereas it reduces that of neutrophils; and increases the number of M2 vs. M1 macrophages. Fittingly, ICOS-Fc enhanced M2 macrophage migration, while it hampered that of M1 macrophages. ICOS−/− and ICOSL−/− KO, and NSG mice showed delayed wound healing, and treatment with ICOS-Fc improved wound closure in ICOS−/− and NSG mice. Conclusion: These data show that the ICOS/ICOSL network cooperates in tissue repair, and that triggering of ICOSL by ICOS-Fc improves cutaneous wound healing by increasing angiogenesis and recruitment of reparative macrophages.  相似文献   
23.
Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.  相似文献   
24.
A 72-year-old female patient with mixed rheumatic mitral valve disease and persistent atrial fibrillation underwent mitral valve replacement and suffered from a combined thrombosis of the bioprosthetic valve and the left atrium as soon as 2 days post operation. The patient immediately underwent repeated valve replacement and left atrial thrombectomy. Yet, four days later the patient died due to the recurrent prosthetic valve and left atrial thrombosis which both resulted in an extremely low cardiac output. In this patient’s case, the thrombosis was notable for the resistance to anticoagulant therapy as well as for aggressive neutrophil infiltration and release of neutrophil extracellular traps (NETs) within the clot, as demonstrated by immunostaining. The reasons behind these phenomena remained unclear, as no signs of sepsis or contamination of the BHV were documented, although the patient was diagnosed with inherited thrombophilia that could impede the fibrinolysis. The described case highlights the hazard of immunothrombosis upon valve replacement and elucidates its mechanisms in this surgical setting.  相似文献   
25.
The inositol 1,4,5-triphosphate receptor type 1 (ITPR1) gene encodes an InsP3-gated calcium channel that modulates intracellular Ca2+ release and is particularly expressed in cerebellar Purkinje cells. Pathogenic variants in the ITPR1 gene are associated with different types of autosomal dominant spinocerebellar ataxia: SCA15 (adult onset), SCA29 (early-onset), and Gillespie syndrome. Cerebellar atrophy/hypoplasia is invariably detected, but a recognizable neuroradiological pattern has not been identified yet. With the aim of describing ITPR1-related neuroimaging findings, the brain MRI of 14 patients with ITPR1 variants (11 SCA29, 1 SCA15, and 2 Gillespie) were reviewed by expert neuroradiologists. To further evaluate the role of superior vermian and hemispheric cerebellar atrophy as a clue for the diagnosis of ITPR1-related conditions, the ITPR1 gene was sequenced in 5 patients with similar MRI pattern, detecting pathogenic variants in 4 of them. Considering the whole cohort, a distinctive neuroradiological pattern consisting in superior vermian and hemispheric cerebellar atrophy was identified in 83% patients with causative ITPR1 variants, suggesting this MRI finding could represent a hallmark for ITPR1-related disorders.  相似文献   
26.
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.  相似文献   
27.
In this work, we present the first synthesis of dispirooxindole-β-lactams employing optimized methodology of one-pot Staudinger ketene-imine cycloaddition with N-aryl-2-oxo-pyrrolidine-3-carboxylic acids as the ketene source. Spiroconjugation of indoline-2-one with β-lactams ring is considered to be able to provide stabilization and wide scope of functionalization to resulting scaffolds. The dispipooxindoles obtained demonstrated medium cytotoxicity in the MTT test on A549, MCF7, HEK293, and VA13 cell lines, and one of the compounds demonstrated antibacterial activity against E. coli strain LPTD.  相似文献   
28.
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) represent a group of hematological disorders that are traditionally considered as indistinct slow progressing conditions; still, a subset of cases shows a rapid evolution towards myelofibrotic bone marrow failure. Specific abnormalities in the megakaryocyte lineage seem to play a central role in this evolution, especially in the bone marrow fibrosis but also in the induction of myeloproliferation. In this review, we analyze the current knowledge of prognostic factors of MPNs related to their evolution to myelofibrotic bone marrow failure. Moreover, we focused the role of the megakaryocytic lineage in the various stages of MPNs, with updated examples of MPNs in vitro and in vivo models and new therapeutic implications.  相似文献   
29.
Crohn’s disease remains one of the challenging problems of modern medicine, and the development of new and effective and safer treatments against it is a dynamic field of research. To make such developments possible, it is important to understand the pathologic processes underlying the onset and progression of Crohn’s disease at the molecular and cellular levels. During the recent years, the involvement of mitochondrial dysfunction and associated chronic inflammation in these processes became evident. In this review, we discuss the published works on pathogenetic models of Crohn’s disease. These models make studying the role of mitochondrial dysfunction in the disease pathogenesis possible and advances the development of novel therapies.  相似文献   
30.
In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号