Phytoestrogens are a group of polyphenolic plant metabolites that can induce biological responses. Their bioactivity is based on their similarity to 17beta-estradiol and their ability to bind to the beta-estrogen receptor. Although epidemiological data are inconclusive, phytoestrogens are considered to be beneficial for a variety of conditions, for example, hormone-related cancers like breast and prostate cancer. To investigate the biological effects of these compounds and to assess the exposure of larger cohorts or the general public, reliable data on the phytoestrogen content of food is necessary. Previously, food analysis for phytoestrogens was performed using either HPLC-UV or GC/MS. Here, we describe the development of the first generic method for the analysis of phytoestrogens in food, using automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. The presented method shows a good reproducibility and can be easily adapted to other phytoestrogens if required. 相似文献
Hierarchical triangulation is a method for point selection and surface representation where the surface is approximated at successively finer levels of detail by triangular patches whose projections in the horizontal plane are nested. A tree data structure for this representation can be constructed in O(n2) worst case and O(n log n) average case time, where n is the number of data points considered. Efficient algorithms for approximation of the elevation of an arbitrary point, contour extraction, and conversion of the hierarchical structure into an ordinary triangulated irregular network, are demonstrated. The convergence and the optimality of the approximation and the relationship of the hierarchical triangulation to a structured graph representation are examined. 相似文献
In a two-dimensional Delaunay-triangulated domain, there exists a partial ordering of the triangles (with respect to a vertex) that is consistent with the two-dimensional visibility of the triangles from that vertex. An equivalent statement is that a polygon that is star-shaped with respect to a given vertex can be extended, one triangle at a time, until it includes the entire domain. Arbitrary planar triangulations do not possess this useful property which allows incremental processing of the triangles.This work was partially supported by the National Science Foundation's US-Italy Collaborative Research Program under Grant INT-8714578 and Information, Robotics, and Intelligent Research Grant IRI-8704781. 相似文献
The integration of physics-based models within CAD systems for garment design leads to highly accurate cloth shape results for virtual prototyping and quality evaluation tasks. To this aim, we present a physics-based system for virtual cloth design and simulation expressly conceived for design purposes. This environment should allow the designer to validate her/his style and design option through the analysis of garment virtual prototypes and simulation results in order to reduce the number and role of physical prototypes. Garment shapes are accurately predicted by including material properties and external interactions through a particle-based cloth model embedded in constrained Newtonian dynamics with collision management, extended to complex-shaped assembled and finished garments. Our model is incorporated within a 3D graphical environment, and includes operators monitoring the whole design process of apparel, e.g. panel sewing, button/dart insertion, multi-layered fabric composition, garment finishings, etc. Applications and case studies are considered, with analysis of CAD modelling phases and simulation results concerning several male and female garments. 相似文献
Memristors are electric components that emulate the memory and computational properties of biological synapses by remembering the current that flows through them. Here, for the first time, the memristive properties of geopolymers, inexpensive ceramic materials manufactured at room temperature from alkaline activation of amorphous aluminosilicate precursors, are presented. It is demonstrated that geopolymers present all the fingerprints of memristors, and a physics-based model is proposed, which demonstrates that electroosmosis in the bulk geopolymer pores induces ion channels that foster change in the overall conductance of the bulk material, contributing to the observed memristive behavior. This model opens the door to a new category of porous electroosmosis-based bulk memristors. Synaptic functions such as short-term plasticity and long-term plasticity, as well as endurance and retention capabilities are also demonstrated. The reported findings pave the way to the use of geopolymers for low-cost applications in neuromorphic computing. 相似文献
Alzheimer’s Disease (AD) is the most common cause of dementia, having a remarkable social and healthcare burden worldwide. Amyloid β (Aβ) and protein Tau aggregates are disease hallmarks and key players in AD pathogenesis. However, it has been hypothesized that microglia can contribute to AD pathophysiology, as well. Microglia are CNS-resident immune cells belonging to the myeloid lineage of the innate arm of immunity. Under physiological conditions, microglia are in constant motion in order to carry on their housekeeping function, and they maintain an anti-inflammatory, quiescent state, with low expression of cytokines and no phagocytic activity. Upon various stimuli (debris, ATP, misfolded proteins, aggregates and pathogens), microglia acquire a phagocytic function and overexpress cytokine gene modules. This process is generally regarded as microglia activation and implies that the production of pro-inflammatory cytokines is counterbalanced by the synthesis and the release of anti-inflammatory molecules. This mechanism avoids excessive inflammatory response and inappropriate microglial activation, which causes tissue damage and brain homeostasis impairment. Once the pathogenic stimulus has been cleared, activated microglia return to the naïve, anti-inflammatory state. Upon repeated stimuli (as in the case of Aβ deposition in the early stage of AD), activated microglia shift toward a less protective, neurotoxic phenotype, known as “primed” microglia. The main characteristic of primed microglia is their lower capability to turn back toward the naïve, anti-inflammatory state, which makes these cells prone to chronic activation and favours chronic inflammation in the brain. Primed microglia have impaired defence capacity against injury and detrimental effects on the brain microenvironment. Additionally, priming has been associated with AD onset and progression and can represent a promising target for AD treatment strategies. Many factors (genetics, environmental factors, baseline inflammatory status of microglia, ageing) generate an aberrantly activated phenotype that undergoes priming easier and earlier than normally activated microglia do. Novel, promising targets for therapeutic strategies for AD have been sought in the field of microglia activation and, importantly, among those factors influencing the baseline status of these cells. The CX3CL1 pathway could be a valuable target treatment approach in AD, although preliminary findings from the studies in this field are controversial. The current review aims to summarize state of the art on the role of microglia dysfunction in AD pathogenesis and proposes biochemical pathways with possible targets for AD treatment. 相似文献
N-thiophthalimido- arylphenothiazines 2 and triarylamines 3 can be converted to dithiabridged triarylamine hetero[4]helicenes 1 using catalytic amounts of chalcogen substituted Lewis Bases and hexafluoro isopropanol as hydrogen bond donor. The procedure occurs under mild reaction conditions and gives good yields avoiding the use of excesses of Lewis Acids as previously reported. A preliminary study about the possibility to control the M and P absolute stereochemistry of helicenes 1 using enantiopure sulfur containing LBs from the natural chiral pool is also reported.
Despite digital 3-D polygon modelling applications providing a common and powerful tool-set for archaeological, architectural and historical visualisation over recent years, the relatively recent developments in high-resolution sculpting software allow for the possibility to create digital outcomes with a degree of surface fidelity not previously obtainable from the more widely used poly-modelling software packages. Such digital sculpting applications are more commonly applied within the video games and TV/motion picture industries, the intention of this paper is to show how such tools and methodologies together with existing scanned data and some historical knowledge can remediate and re-imagine lost sculptural form. The intended research will focus on an examination and partial re-construction of the tomb of Sir John Neville, 3rd Baron Raby located at Durham Cathedral, County Durham UK. 相似文献
The cost‐effective TPPH2/TBACl‐catalyzed (TPPH2=dianion of tetraphenyl porphyrin; TBACl=tetrabutyl ammonium chloride) carbon dioxide cycloaddition to N‐aryl aziridines was successful in synthesizing N‐aryl oxazolidin‐2‐ones. A catalytic tandem reaction was also developed, in which N‐aryl aziridines were initially synthesized and then reacted with carbon dioxide without being purified. The procedure occurred with a very high atom economy, molecular nitrogen being the only by‐product of the entire tandem process. In addition, the mechanism of catalytic cycle was investigated by DFT calculations.