首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   7篇
化学工业   15篇
金属工艺   2篇
机械仪表   6篇
建筑科学   3篇
能源动力   4篇
轻工业   2篇
无线电   37篇
一般工业技术   20篇
冶金工业   7篇
自动化技术   5篇
  2024年   1篇
  2023年   3篇
  2021年   3篇
  2020年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   1篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有101条查询结果,搜索用时 31 毫秒
41.

Successive-cancellation list (SCL) decoding for polar codes has the disadvantage of high latency owing to serial operations. To improve the latency, several algorithms with additional circuits have been proposed, but the area becomes larger. This paper proposes a fast multibit decision method having-high area efficiency based on the SCL decoding algorithm. First, multiple bits can be determined to reduce clock cycles using new nodes represented by the information bits and frozen bits. We propose the new nodes called the combined nodes and the other node in this paper. The combined nodes that combine redundant operations of the fast-simplified SC (fast-SSC) algorithm can increase area efficiency. The other node with bit patterns other than the node types of the fast-SSC algorithm performs an 8-bit multibit decision to reduce the number of decoding cycles. Latency is further reduced by applying a sphere decoding method to the other node. In addition, a sorter is proposed to reduce the critical path delay. As a large number of path metrics causes sorter delays, the proposed sorter can achieve high throughput with the small area. The proposed (1024, 512) SCL decoder showed negligible performance degradation in the simulation using Matlab and was synthesized using 65 nm CMOS technology. The proposed decoder achieves about 1.3Gbps with the small area. As a result, the area-throughput efficiency is at least 1.4 times higher than the state-of-the-art works over 1 Gbps.

  相似文献   
42.
This paper introduces a Pascal’s triangle model to draw the potential locations and their probabilities for a normal node given the hop counts to the anchors according to the extent of detour of the shortest paths. Based on our proposed model, a Pascal’s triangle-based localization (PTL) algorithm using local connectivity information is presented for anisotropic wireless networks with a small number of anchors. The superiority of the PTL algorithm has been validated over the state-of-the-art algorithms through MATLAB simulations. We have shown that compared to the other algorithms, the PTL algorithm achieves higher localization accuracy with even fewer anchors. We have also validated the performance of the PTL algorithm in a real environment.  相似文献   
43.
This paper proposes a cost-effective simplified Euclid’s (SE) algorithm for Reed-Solomon decoders, which can replace the existing modified Euclid’s (ME) algorithm. The new proposed SE algorithm, using new initial conditions and polynomials, can significantly reduce the computation complexity compared with the existing ME and reformulated inversionless Berlekamp-Massey (RiBM) algorithms, since it has the least number of coefficients in the new initial conditions. Thus, the proposed SE architecture, consisting of only 3t basic cells, has the smallest area among the existing key solver blocks, where t means the error correction capability. In addition, the SE architecture requires only the latency of 2t clock cycles to solve the key equation without initial latency. The proposed RS decoder has been synthesized using the 0.18 μm Samsung cell library, and the gate count of the RS decoder, excluding FIFO memory, is only 40,136 for the (255, 239, 8) RS code.  相似文献   
44.
This paper proposes a high-speed and area-efficient three-parallel Reed-Solomon (RS) decoder using the simplified degree computationless modified Euclid (S-DCME) algorithm for the key equation solver (KES) block. To achieve a high throughput rate, the inner signals, such as the syndrome, error locator and error value polynomials, are computed in parallel. In addition, the key equations are solved by using the S-DCME algorithm to reduce the hardware complexity. To handle the many problems caused by applying the S-DCME algorithm to the KES block, we modify the architectures of some of the blocks in the three-parallel RS decoder. The proposed RS architecture can reduce the hardware complexity by about 80% with respect to the KES block. In addition, the proposed RS architecture has an approximately 25% shorter latency than the conventional parallel RS architectures.  相似文献   
45.
A new series of highly efficient red‐emitting phosphorescent Ir(III) complexes, (Et‐CVz‐PhQ)2Ir(pic‐N‐O), (Et‐CVz‐PhQ)2Ir(pic), (Et‐CVz‐PhQ)2Ir(acac), (EO‐CVz‐PhQ)2Ir(pic‐N‐O), (EO‐CVz‐PhQ)2Ir(pic), and (EO‐CVz‐PhQ)2Ir(acac), based on carbazole (CVz)‐phenylquinoline (PhQ) main ligands and picolinic acid N‐oxide (pic‐N‐O), picolinic acid (pic), and acetylacetone (acac) ancillary ligands, are synthesized for phosphorescent organic light‐emitting diodes (PhOLEDs), and their photophysical, electrochemical, and electroluminescent (EL) properties are investigated. All of the Ir(III) complexes have high thermal stability and emit an intense red light with an excellent color purity at CIE coordinates of (0.65,0.34). Remarkably, high‐performance solution‐processable PhOLEDs were fabricated using Ir(III) complexes with a pic‐N‐O ancillary ligand with a maximum external quantum efficiency (5.53%) and luminance efficiency (8.89 cd A?1). The novel use of pic‐N‐O ancillary ligand in the synthesis of phosphorescent materials is reported. The performance of PhOLEDs using these Ir(III) complexes correlates well with the results of density functional theory calculations.  相似文献   
46.
The paper proposes a new continuous-flow mixed-radix (CFMR) fast Fourier transform (FFT) processor that uses the MR (radix-4/2) algorithm and a novel in-place strategy. The existing in-place strategy supports only a fixed-radix FFT algorithm. In contrast, the proposed in-place strategy can support the MR algorithm, which allows CF FFT computations regardless of the length of FFT. The novel in-place strategy is made by interchanging storage locations of butterfly outputs. The CFMR FFT processor provides the MR algorithm, the in-place strategy, and the CF FFT computations at the same time. The CFMR FFT processor requires only two N-word memories due to the proposed in-place strategy. In addition, it uses one butterfly unit that can perform either one radix-4 butterfly or two radix-2 butterflies. The CFMR FFT processor using the 0.18 /spl mu/m SEC cell library consists of 37,000 gates excluding memories, requires only 640 clock cycles for a 512-point FFT and runs at 100 MHz. Therefore, the CFMR FFT processor can reduce hardware complexity and computation cycles compared with existing FFT processors.  相似文献   
47.
Cylinders and rings fabricated from AerMet® 100 alloy and AISI 1018 steel have been explosively driven to fragmentation in order to determine the fracture strains for these materials under plane-strain and uniaxial-stress conditions. The phenomena associated with the dynamic expansion and subsequent break up of the cylinders are monitored with high-speed diagnostics. In addition, complementary experiments are performed in which fragments from the explosively driven cylinders are recovered and analyzed to determine the statistical distribution associated with the fragmentation process as well as to determine failure mechanisms. The data are used to determine relevant coefficients for the Hancock–McKenzie (Johnson–Cook) fracture model. Metallurgical analysis of the fragments provides information on damage and failure mechanisms.  相似文献   
48.
The growth of Cu-Sn intermetallics at a pretinned copper-solder interface   总被引:1,自引:0,他引:1  
This article reports a comparative study of the formation and growth of intermetallic phases at the interface of Cu wetted with a thick solder joint or a thin, pretinned solder layer. The η phase (Cu6Sn5) forms when Cu is wet with eutectic solder at temperatures below 400 °C. The intermetallic layer is essentially unaffected by aging at 70 °C for as long as 13 weeks. On aging a eutectic joint at 170 °C, the η-phase intermetallic layer thickens and ε phase (Cu3Sn) nucleates at the Cu/intermetallic interface and grows to a thickness comparable to that of the η phase, while a Pb-rich boundary layer forms in the solder. The aging behavior of a thin, pretinned eutectic layer is qualitatively different. At 170 °C, the Sn in the eutectic is rapidly consumed to form η-phase intermetallic, which converts to ε phase. The residual Pb withdraws into isolated islands, and the solderability of the surface deteriorates. When the pretinned layer is Pb-rich (95Pb-5Sn), the Sn in the layer is also rapidly converted into η phase, in the form of dendrites penetrating from the intermetallic at the Cu interface and discrete precipitates in the bulk. How ever, the development of the intermetallic largely ceases when the Sn is consumed; ε phase does not form, and the residual Pb remains as an essentially continuous layer, preserving the solderability of the sample. These observations are interpreted in light of the Cu-Sn and Pb-Sn phase diagrams, the temperature of initial wetting, and the relative diffusivities of Cu and Sn in the solder and intermetallic phases. A.J. SUNWOO, Formerly with the Lawrence Berkeley Laboratory, Berkeley, CA,  相似文献   
49.
Copper‐catalyzed coupling reaction of 2‐iodobenzoic acids and alkynes such as terminal acetylenes, alkynyl carboxylic acids, and trimethylsilylacetylene selectively afforded isocoumarins and phthalides in the presence of cesium carbonate (Cs2CO3) and dimethyl sulfoxide (DMSO). Among the regioselective products, only the 6‐endo‐dig product, isocoumarin, was formed at 100 °C, and the 5‐exo‐dig product, phthalide, was formed as a major product at 25 °C. A variety of alkynes produced the corresponding isocoumarins and phthalides in good yields. A mechanism is suggested in which the formation of 2‐alkynylbenzoic acid as an intermediate via Sonogashira‐type coupling was ruled out in the reaction pathway.

  相似文献   

50.
The air change rate in the chamber, the loading factor of the materials, and the mass transfer coefficient are very important factors in the measurement of chemical compounds, because they have a decisive effect on emission rates of chemical compounds emitted from materials. Small 20-liter chambers, such as the advanced pollution and air quality chamber, are generally used in Korea and Japan for measuring the amount of released chemicals. In this study, chemical compounds released from building materials and adhesives were measured using a chamber proposed by the authors to control the mass transfer coefficient on the surface of the tested building material and we examined the distribution of chemical compounds concentrations in the chamber by means of computational fluid dynamics to confirm test reliability. The chamber was controlled and maintained at 28?°C, a relative humidity of 50%, a mass transfer coefficient of 14?m/h with an air change rate of 0.50?h?1, and formaldehyde and total volatile organic compounds were emitted from the flooring material and adhesive. As the mass transfer coefficient on the surface of the tested building material increased, the emission rates of chemical compounds measured using the proposed chamber increased. The mass transfer coefficient on the surface of the tested building material significantly influenced the emission rates of the chemical compounds released from the building material and adhesive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号