首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9191篇
  免费   872篇
  国内免费   31篇
电工技术   150篇
综合类   31篇
化学工业   2270篇
金属工艺   364篇
机械仪表   634篇
建筑科学   127篇
矿业工程   8篇
能源动力   371篇
轻工业   621篇
水利工程   40篇
石油天然气   6篇
武器工业   1篇
无线电   1749篇
一般工业技术   2326篇
冶金工业   409篇
原子能技术   133篇
自动化技术   854篇
  2024年   5篇
  2023年   115篇
  2022年   147篇
  2021年   310篇
  2020年   225篇
  2019年   279篇
  2018年   281篇
  2017年   351篇
  2016年   417篇
  2015年   332篇
  2014年   487篇
  2013年   654篇
  2012年   689篇
  2011年   795篇
  2010年   538篇
  2009年   576篇
  2008年   515篇
  2007年   391篇
  2006年   353篇
  2005年   299篇
  2004年   256篇
  2003年   269篇
  2002年   246篇
  2001年   185篇
  2000年   175篇
  1999年   155篇
  1998年   195篇
  1997年   141篇
  1996年   121篇
  1995年   83篇
  1994年   70篇
  1993年   69篇
  1992年   60篇
  1991年   53篇
  1990年   43篇
  1989年   33篇
  1988年   21篇
  1987年   16篇
  1986年   15篇
  1985年   33篇
  1984年   14篇
  1982年   7篇
  1981年   9篇
  1980年   12篇
  1979年   11篇
  1977年   5篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1970年   4篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
141.
Summary Isothermal cure kinetics ofEPON HPT 1071/DDS system have been performed by means of differential scanning calorimetry. The maximum cure rate and the extent of conversion at various DDS concentrations were studied as a function of cure temperature. Maximum cure rate increases with increasing cure temperature and DDS concentration. At various DDS concentrations, the maximum cure rate occured between 19–22% conversion. In order to evaluate the kinetic parameters, numerical calculations by means of a Newton-Raphson technique and experimental results obtained from the peak of reaction rate curve were undertaken.  相似文献   
142.
The removal of hydrogen sulfide (H2S) from simulated gas was carried out in a batch type fluidized-bed reactor using natural manganese ore (NMO), which consists of several metal oxides (MnOx: 51.85%, FeOy: 3.86%, CaO: 0.11%). The H2S breakthrough curves were obtained by changing temperature, gas velocity, initial H2S concentration, and aspect ratio. Moreover, the effects of the particle size and the particle-mixing fraction on H2S removal were investigated in a binary system of different particle size. From this study, H2S removal efficiency increased with increasing temperature but decreased with increasing excess gas velocity. The breakthrough time for H2S decreased as the gas velocity increased, which leads to reducing gas-solid contacting due to gas bypassing in a fluidized bed reactor. Improvement of H2S removal efficiency in continuous process can be expected from the results of the binary particle system with different size in a batch experiment. The NMO could be considered as a potential sorbent in H2S removal.  相似文献   
143.
The interfaces between metal organic chemical vapor deposited PbTiO3 thin films and various diffusion barrier layers deposited on Si substrates were investigated by transmission electron microscopy. Several diffusion barrier thin films such as polycrystalline TiO2, amorphous TiO2, ZrO2, and TiN were deposited between the PbTiO3 thin film and Si substrate, because the deposition of PbTiO3 thin films on bare Si substrates produced Pb silicate layers at the interface irrespective of the deposition conditions. The TiO2 films were converted to PbTiO3 by their reaction with diffused Pb and O ions during PbTiO3 deposition at a gubstrate temperature of 410°C. Further diffusion of Pb and O induces formation of a Pb silicate layer at the interface. ZrO2 did not seem to react with Pb and O during PbTiO3 deposition at the same temperature, but the Pb and O ions that diffused through the ZrO2 layer formed a Pb silicate layer between the ZrO2 and Si substrate. The TiN films did not seem to react with Pb and O ions during the deposition of PbTiO3 at 410°C, but reacted with PbTiO3 to form a lead-deficient pyrochlore during postdeposition rapid thermal annealing at 700°C. However, TiN could effectively block the diffusion of Pb and O ions into the Si substrate and the formation of Pb silicate at the interface.  相似文献   
144.
The key to the success of flip‐chip technology lies in the availability of sucessful underfill materials. However, the reliability of flip‐chip technology using current underfill materials is generally found to be lower than that of conventional wire‐bond connection packaging materials such as epoxy molding compound (EMC) because of the high coefficients of thermal expansion (CTE) and moisture absorption of cured underfill material. In this study desbimide (DBMI), which has a low melting point (about 80°C), was used in the underfill materials as a cohardener. As a result, DBMI‐added underfill can show excellent thermal reliability, which is due to the superior properties of the CTE, the elastic modulus, and water resistance. When the properties of a 2 wt % DBMI‐added underfill were compared with those of a typical underfill (epoxy/anhydride), the CTE value was reduced to less than one‐half at the solder reflow temperature (about 200°C), the elastic modulus was reduced to less than one‐half in the temperature region below the glass‐transition temperature, and the water resistance was improved twofold. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2617–2624, 2002  相似文献   
145.
Three new soluble polyconjugated polymers, all of which emitted blue light in photoluminescence and electroluminescence, were synthesized, and their luminescence properties were studied. The polymers were poly{1,1′‐biphenyl‐4,4′‐diyl‐[1‐(4‐t‐butylphenyl)]vinylene}, poly((9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)vinylene‐1,4‐phenylene]}) [P(DOF‐PVP)], and poly([N‐(2‐ethyl) hexylcarbazole‐3,6‐diyl]‐alt‐{1,4‐phenylene‐[1‐(4‐t‐butylphenyl)]vinylene‐1,4‐phenylene}). The last two polymers had alternating sequences of the two structural units. Among the three polymers, P(DOF‐PVP) performed best in the light‐emitting diode devices of indium–tin oxide/poly(ethylenedioxythiophene) doped with poly(styrene sulfonate) (30 nm)/polymer (150 nm)/Li:Al (100 nm). This might have been correlated with the balance in and magnitude of the mobility of the charge carriers, that is, positive holes and electrons, and also the electronic structure, that is, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels, of the polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 307–317, 2006  相似文献   
146.
Diblock copolymers with different poly(ε‐caprolactone) (PCL) block lengths were synthesized by ring‐opening polymerization of ε‐caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG‐OH, MW 2000) as initiator. The self‐aggregation behaviors and microscopic characteristics of the diblock copolymer self‐aggregates, prepared by the diafiltration method, were investigated by using 1H NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG–PCL block copolymers formed the self‐aggregate in an aqueous environment by intra‐ and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations of the block copolymer self‐aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The partition equilibrium constants (Kv) of pyrene, measured by fluorescence spectroscopy, revealed that the inner core hydrophobicity of the nanoparticles increased with increasing PCL chain length. The aggregation number of PCL chain per one hydrophobic microdomain, investigated by the fluorescence quenching method using cetylpyridinium chloride as a quencher, revealed that 4–20 block copolymer chains were needed to form a hydrophobic microdomain, depending on PCL block length. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3520–3527, 2006  相似文献   
147.
Semi‐interpenetrating polymer network (semi‐IPN) membranes based on novel sulfonated polyimide (SPI) and poly (ethylene glycol) diacrylate (PEGDA) have been prepared for the fuel cell applications. SPI was synthesized from 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, and 2‐bis [4‐(4‐aminophenoxy) phenyl] hexafluoropropane. PEGDA was polymerized in the presence of SPI to synthesize semi‐IPN membranes of different ionic contents. These membranes were characterized by determining, ion exchange capacity, water uptake, water stability, proton conductivity, and thermal stability. The proton conductivity of the membranes increased with increasing PEGDA content in the order of 10?1 S cm?1 at 90°C. These interpenetrating network membranes showed higher water stability than the pure acid polyimide membrane. This study shows that semi‐IPN SPI membranes based on PEGDA which gives hydrophilic group and structural stability can be available candidates comparable to Nafion® 117 over 70°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
148.
Nitrogen molecules have been encapsulated into the central hollows of vertically aligned carbon nitride (CN) multiwalled nanofibers by dc plasma-enhanced chemical vapor deposition with C2H2, NH3, and N2 gases on a Ni/TiN/Si(1 0 0) substrate at 650 °C. X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectra showed the existence of nitrogen molecules in CN nanofibers. Elemental mapping images with electron energy loss spectroscopy of the CN nanofiber and catalyst metal, and optical emission spectroscopy spectra of the plasma showed the distribution of nitrogen atoms and molecules in the CN nanofiber, catalyst metal, and gaseous precursor, respectively. These studies showed that atomic nitrogen diffused into the catalytic metal particle because of the concentration gradient and then saturated at the bottom of the particle. Saturated nitrogen atom participated in the formation of the CN nanofiber wall but most of nitrogen was trapped in the central hollow of the nanofiber as molecules.  相似文献   
149.
A series of poly(ethylene phthalate‐co‐terephthalate)s were synthesized by melt polycondensation of ethylene glycol (EG) with dimethyl phthalate (DMP) and dimethyl terephthalate (DMT) in various proportions. The DMT‐rich polymers were obtained with reasonably high molecular weights, whereas the DMP‐rich polymers were synthesized with relatively low molecular weights due to steric effects associated with the highly kinked DMP monomer. The compositions and thermal properties of the polymers were determined. The copolymers containing DMP in amounts of ≤ 21 mol% were crystallizable, whereas the other polymers were not. All the polymers exhibited a single glass transition temperature. Analysis of the measured glass transition temperatures and crystal melting temperatures confirmed that the DMT‐rich copolymers are random copolymers. The non‐isothermal crystallization behaviors of the DMT‐rich copolymers were investigated by calorimetry and modified Avrami analysis. The Avrami exponents n were found to range from 2.7 to 3.8, suggesting that the copolymers crystallize via a heterogeneous nucleation and spherulitic growth mechanism; that is, the incorporation of DMP units as the minor component does not change the growth mechanism of the copolymers. In addition, the activation energies of the crystallizations of the copolymers were determined; the copolymers were found to have higher activation energies than the PET homopolymer. Polym. Eng. Sci. 44:1682–1691, 2004. © 2004 Society of Plastics Engineers.  相似文献   
150.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号