首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   18篇
  国内免费   2篇
电工技术   4篇
综合类   1篇
化学工业   141篇
金属工艺   23篇
机械仪表   16篇
建筑科学   21篇
能源动力   46篇
轻工业   36篇
水利工程   11篇
石油天然气   7篇
无线电   66篇
一般工业技术   153篇
冶金工业   55篇
原子能技术   11篇
自动化技术   35篇
  2024年   4篇
  2023年   8篇
  2022年   13篇
  2021年   20篇
  2020年   18篇
  2019年   12篇
  2018年   19篇
  2017年   18篇
  2016年   26篇
  2015年   17篇
  2014年   22篇
  2013年   33篇
  2012年   33篇
  2011年   44篇
  2010年   36篇
  2009年   23篇
  2008年   38篇
  2007年   29篇
  2006年   21篇
  2005年   10篇
  2004年   12篇
  2003年   12篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   5篇
  1998年   14篇
  1997年   6篇
  1996年   16篇
  1995年   9篇
  1994年   5篇
  1993年   10篇
  1992年   6篇
  1991年   7篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1976年   4篇
  1975年   2篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有626条查询结果,搜索用时 15 毫秒
71.
This study investigated the role of flaxseed meal (FSM), a rich terrestrial source of ω-3 fatty acids, in the alteration of the fatty acid profile and metabolism, health indices, physicochemical properties, and sensory quality of broiler chicken meat. The broiler chickens were fed 100 g FSM kg−1 diet for different time periods (1, 2, 3, 4, and 5 weeks). The results revealed that 100 g FSM feeding in broiler chickens for at least 3 weeks increased (P < 0.01) the EPA, DHA, MUFA, PUFA, ω-3 PUFA, and ω-6 PUFA of broiler chicken meat with the corresponding decrease in palmitic acid, stearic acid, and SFA content. 100 g FSM feeding up to 3 weeks has increased the Δ9-desaturases (P < 0.05), thioesterase index (P < 0.01), and Δ5-desaturase + Δ6-desaturase activity (P < 0.01) along with an improvement in health indices (P < 0.01) of chicken meat. Similarly, a reduction in meat cholesterol and fat content of thigh meat (P < 0.01) was observed by feeding 100 g FSM for at least 3 weeks with no effect on the pH, color scores, and sensory evaluation of broiler chicken meat. The water-holding capacity (WHC) and extract release volume (ERV) decreased, whereas, drip loss of meat increased (P < 0.01) due to the feeding of 100 g FSM beyond 3 weeks. Thus, this study concluded that 100 g FSM feeding for 3 weeks in broiler chickens significantly improves the fatty acid profile, lipid metabolism, and health indices of meat, without compromising the physicochemical properties of broiler chicken meat.  相似文献   
72.
Ever-growing demand for citric acid (CA) and urgent need for alternative sources has served as a driving force for workers to search for novel and economical substrates. Submerged fermentation was conducted using apple (Malus domestica) pomace ultrafiltration sludge as an inexpensive substrate for CA bioproduction, using Aspergillus niger NRRL567. The crucial parameters, such as total suspended solids and inducer concentration, were optimised by response surface methodology for higher CA production. The optimal CA concentrations of 44.9 g/100 g and 37.9 g/100 g dry substrate were obtained with 25 g/l of initial total solids and 3% (v/v) methanol and 25 g/l of total solids and 3% (v/v) ethanol concentration, respectively, after the 144 h of fermentation. Results indicated that total solids concentration, and methanol as an inducer, were effective with respect to higher CA yield and also indicated the possibility of using apple pomace sludge as a potential substrate for economical production of CA.  相似文献   
73.
Porous silicon interfaces have been modified with nitrided TiO2 (TiON) nanoparticles to develop highly efficient photoelectrodes. Photoelectrodes were prepared by impregnating the electrochemically prepared porous silicon microchannels with titanium oxynitride. Photocatalytic measurements were carried out on titanium oxynitride particles in water‐methanol mixture and the results showed a dependence on the nitrogen concentration. Among the photoelectrodes used for photocurrent measurements, porous silicon impregnated with TiO2 nitrided at 600 °C showed maximum photocurrent increase after exposure to sunlight‐type radiation. The enhancement in photocurrent was one order more for the porous silicon/titanium oxynitride hetero‐structure than that of polished silicon/titanium oxynitride hetero‐structure. Photoelectrodes thus prepared were found to have stable performance for a period of six months. This observation promises the possibility of using porous silicon/titanium oxynitride hetero‐structures as efficient electrodes for photovoltaic cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
74.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   
75.
Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS−/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.  相似文献   
76.
77.
78.
79.

Reactive oxygen species (ROS) refers to the reactive molecules and free radicals of oxygen generated as the by-products of aerobic respiration. Historically, ROS are known as stress markers that are linked to the response of immune cell against microbial invasion, but recent discoveries suggest their role as secondary messengers in signal transduction and cell cycle. Tissue engineering (TE) techniques have the capabilities to harness such properties of ROS for the effective regeneration of damaged tissues. TE employs stem cells and biomaterial matrix, to heal and regenerate injured tissue and organ. During regeneration, one of the constraints is the unavailability of oxygen as proper vasculature is absent at the injured site. This creates hypoxic conditions at the site of regeneration. Hence, effective response against the stresses like hypoxia spurs the regeneration process. Contrary, hyperoxic condition may increase the risk of ROS stress at the site. TE tries to overcome these limitations with the new class of biomaterials that can sense such stresses and respond accordingly. This review endeavors to explain the role of ROS in stem cell proliferation and differentiation, which is a key component in regeneration. This compilation also highlights the new class of biomaterials that can overcome the hypoxic conditions during tissue regeneration along with emphasis on the ROS-responsive biomaterials and their clinical applications. Incorporating these biomaterials in scaffolds development holds huge potential in tissue or organ regeneration and even in drug delivery.

Graphical abstract
  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号