首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4196篇
  免费   74篇
  国内免费   10篇
电工技术   57篇
综合类   5篇
化学工业   757篇
金属工艺   93篇
机械仪表   139篇
建筑科学   109篇
矿业工程   4篇
能源动力   158篇
轻工业   231篇
水利工程   11篇
石油天然气   16篇
无线电   727篇
一般工业技术   764篇
冶金工业   417篇
原子能技术   22篇
自动化技术   770篇
  2024年   17篇
  2023年   25篇
  2022年   77篇
  2021年   109篇
  2020年   36篇
  2019年   65篇
  2018年   62篇
  2017年   64篇
  2016年   84篇
  2015年   77篇
  2014年   123篇
  2013年   339篇
  2012年   211篇
  2011年   278篇
  2010年   235篇
  2009年   283篇
  2008年   220篇
  2007年   210篇
  2006年   167篇
  2005年   138篇
  2004年   120篇
  2003年   112篇
  2002年   89篇
  2001年   85篇
  2000年   60篇
  1999年   82篇
  1998年   168篇
  1997年   114篇
  1996年   89篇
  1995年   69篇
  1994年   74篇
  1993年   76篇
  1992年   39篇
  1991年   32篇
  1990年   28篇
  1989年   30篇
  1988年   32篇
  1987年   16篇
  1986年   13篇
  1985年   12篇
  1984年   11篇
  1983年   9篇
  1982年   11篇
  1980年   9篇
  1979年   16篇
  1978年   11篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
  1973年   6篇
排序方式: 共有4280条查询结果,搜索用时 15 毫秒
51.
Hydroxyl‐terminated polybutadiene (HTPB), 4,4′‐dicyclohexyl methane diiscyanate (H12MDI), and 1,4‐butane diol are used to synthesize polyurethane (PU) solutions by two‐stage process. Interpenetrating networks (IPNs) of HTPB‐based PU and poly(methyl methacrylate) (PMMA) with HTPB/MMA (wt/wt % ratio) = 2.0, 1.5, 1.0, 1.5, 0.8, and 0.6, which are designated as IPN1 to IPN5, respectively, are synthesized by sequential polymerization technique. Thermal properties, tensile strength, and contact angle of membranes increase with the increase of MMA content, while the elongation of membranes show the reverse trend. Characterization of membranes are investigated by C?C/C?O absorption ratio and infrared absorption frequency shiftment. These PU and IPN membranes are used for the separation of ethanol/water and isopropanol/water solution by pervaporation test. IPN3 membrane possesses the largest pervaporation permeability and the separation factor. The pervaporation results of ethanol/water feed has the same trend as that of isopropyl alcohol (IPA)/water solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
52.
This study introduces an abrasive jet polishing (AJP) technique in which the pneumatic air stream carries not only abrasive particles, but also an additive of either pure water or pure water with a specified quantity of machining oil. Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of electrical discharge machined SKD61 mold steel specimens. A series of experimental trials are then conducted using the optimal AJP parameters to investigate the respective effects of the additive type and the abrasive particle material and diameter in achieving a mirror-like finish of the polished surface. The Taguchi trials indicate that when polishing is performed using pure water as an additive, the optimal processing parameters are as follows: an abrasive material to additive ratio of 1:2, an impact angle of 30°, a gas pressure of 4 kg/cm2, a nozzle-to-workpiece height of 10 mm, a platform rotational velocity of 200 rpm, and a platform travel speed of 150 mm/s. Applying these processing parameters, it is found that the optimal polishing effect is attained using #8000SiC abrasive particles and a 1:1 mixture of water-solvent machining oil and pure water. The experimental results show that under these conditions, the average roughness of the electrical discharge machined SKD61 surface is reduced from an original value of Ra=1.03 μm (Rmax: 7.74 μm) to a final value of Ra=0.13 μm (Rmax: 0.90 μm), corresponding to a surface roughness improvement of approximately 87%.  相似文献   
53.
During copper chemical mechanical polishing (Cu-CMP), the physical properties of slurry, such as the dispersion and suspension stability of abrasives, the interaction between particles and the polished surface, and the rheological characteristics, greatly affect the planarization efficiency. In this study, several nonionic surfactants were added to change the aforementioned physical characteristics of slurry and Cu-CMP performance. Their effects were investigated. The experimental results showed that Al2O3 slurry with 300 ppm Triton DF-16 could enhance the wettability of the Cu surface and stabilize the dispersion of abrasives in the slurry. Therefore, the passivation reaction on the Cu surface during CMP would occur uniformly, and the removal of particles during post cleaning could be improved. Cu CMP using the slurry with an adequate amount of nonionic surfactants, Triton DF-16, is proposed to reduce the surface roughness, enhancing the planarity.  相似文献   
54.
A series of segmented polyurethanes containing 60 wt° of hard segments (HS) was prepared from MDI (4,4-diphenylmethane diisocyanate) ethylene glycol and mixtures of a polyoxyethylene end-capped polyoxypropylene triol and a polyoxyethylene end-capped polyoxypropylene diol. The effects of the content of polyether diol in polyether polyols on phase separation and properties was investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and investigation of tensile properties. The DSC and DMA results indicate that the polyurethane derived from only polyether triol exhibits obvious phase separation and that the HS is immiscible with the SS, but that the HS is compatible with the HS for the polyurethane derived from polyether diol. As the content of polyether diol increases, the compatibility between HS and SS increases. As the content of polyether diol increases, the tensile strength. elongation. toughness and tear resistance of the polyurethanes increases. but their moduli decrease. The modulus-temperature dependence in the temperature region of –30 to 65 °C increases as the polyether diol content increases.  相似文献   
55.
The methylation of various aldehydes, such as acetaldehyde, propionaldehyde, and phenylacetaldehyde over titanium oxidesupported vanadium oxide was studied under atmospheric pressure and temperatures of 250–400°C. The catalyst properties of titanium oxide can be enhanced only by addition of a fairly small amount of vanadium. High-temperature treatment transforms titanium oxide, the support, from anatase to rutile, which causes the catalysts to lose their catalytic properties. The reactivity of these can be ranked in the following order: acetaldehyde > propionaldehyde > phenylacetaldehyde. The steric effect of the substituted groups in propionaldehyde or phenylacetaldehyde may prevent self-condensation to form oligomers and to give a high selectivity of alkylated products.  相似文献   
56.
The liquid crystalline transitions of two kinds of smectic polyesters with different molecular weights were investigated by DSC, polarized microscopy and X-ray diffraction. The molecular weight affects the transitions significantly for these two kinds of polyesters. With a high enough molecular weight, both poly (pentamethylenep,p-bibenzoate) and poly(hexamethylenep,p-bibenzoate) exhibit an enantiotropic smectic phase, but the two endothermic transition peaks of the DSC heating curve seem to overlap. The polyesters tend to exhibit a monotropic smectic phase as the molecular weight decreases. From the DSC cooling curve, the isotropic-smectic transition can be seen more clearly. As the molecular weight decreases, the smectic order decrease significantly. The molecular weight affects the transitions in a different way for these two different kinds of polyesters.  相似文献   
57.
Selective isolation of Kunitz trypsin inhibitor (KTI) and lectin from soybean whey solutions by different types of chitosan beads was investigated. The chitosan beads were co-crosslinked with tripolyphosphate/genipin in solutions at pH 5, 7 or 9 (CB5, CB7, CB9). The maximum adsorption ratios of chitosan beads to KTI and lectin were observed at pH 4.4 and 5.4, respectively; highly selective separation was also demonstrated at these pHs. The adsorption ratios increased with temperature, rising between 5 and 25 °C. CB9 produced the best adsorption ratio, followed by CB7 then CB5. The critical interaction governing absorption of chitosan beads to KTI and lectin could be hydrogen bonding. At pH 9, KTI and lectin desorbed efficiently from CB7 with desorption ratios of 80.9% and 81.4%, respectively. The desorption was most likely caused predominantly by electrostatic repulsion. KTI and lectin can effectively be selectively isolated from soybean whey using this novel separation technique.  相似文献   
58.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   
59.
Poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposites were fabricated using the twin‐screw extrusion technique. The spherulitic morphologies, thermomechanical, mechanical, and gas‐barrier properties, as well as the effect of clay on the transparency of the resulting nanocomposites were identified. The clay induced the heterogeneous nucleation of the nanocomposites during the cold crystallization process, thereby increasing the crystallinities and melting temperatures of the resulting nanocomposites. The incorporation of clay increased the storage moduli, Young's moduli, impact strengths, and barrier properties of the PET, PETG, and PET/PETG blend. Regarding the optical transparency, the inclusion of clay can make the crystallizable PET matrix crystalline opaque. However, the amorphous PETG maintained its transparency. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39869.  相似文献   
60.
This paper presents a new method for quantifying uncertainty in the predictions of a nanomaterial computational model to account for variability in the constituent nanostructure properties and characterization measurements. The stiffness of a buckypaper–polymer composite is predicted using a micromechanics model. The model requires from the user as inputs the nanostructure properties, including the diameter, length, and curvature distribution of the carbon nanotubes which shows large variability. The current characterization techniques used to describe these dimensions are subject to considerable measurement error. We propose a constrained nonlinear programming approach for quantification of raw material variability and its impact on the property prediction of buckypaper–polymer composites. The uncertainty quantification method is useful for decision making to predict probability that the quality characteristic of the final part will satisfy design constraints. A case study based on data from a real buckypaper manufacturing process was used to illustrate the approach. It is shown that modeling the correlation between nanostructure properties using a multivariate distribution rather than independent univariate distributions is important to accurately quantify the effect of these properties on the final-part property.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号