首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1258篇
  免费   96篇
  国内免费   1篇
电工技术   8篇
综合类   3篇
化学工业   609篇
金属工艺   7篇
机械仪表   26篇
建筑科学   54篇
能源动力   30篇
轻工业   199篇
水利工程   4篇
石油天然气   1篇
无线电   84篇
一般工业技术   186篇
冶金工业   49篇
原子能技术   1篇
自动化技术   94篇
  2024年   2篇
  2023年   22篇
  2022年   180篇
  2021年   189篇
  2020年   43篇
  2019年   37篇
  2018年   52篇
  2017年   34篇
  2016年   56篇
  2015年   47篇
  2014年   59篇
  2013年   80篇
  2012年   70篇
  2011年   99篇
  2010年   51篇
  2009年   44篇
  2008年   37篇
  2007年   44篇
  2006年   38篇
  2005年   30篇
  2004年   24篇
  2003年   19篇
  2002年   13篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1977年   2篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1355条查询结果,搜索用时 15 毫秒
21.
In the field of flexible electronics, emerging applications require biocompatible and unobtrusive devices, which can withstand different modes of mechanical deformation and achieve low complexity in the fabrication process. Here, the fabrication of a mesa‐shaped elastomeric substrate, supporting thin‐film transistors (TFTs) and logic circuits (inverters), is reported. High‐relief structures are designed to minimize the strain experienced by the electronics, which are fabricated directly on the pillars' surface. In this design configuration, devices based on amorphous indium‐gallium‐zinc‐oxide can withstand different modes of deformation. Bending, stretching, and twisting experiments up to 6 mm radius, 20% uniaxial strain, and 180° global twisting, respectively, are performed to show stable electrical performance of the TFTs. Similarly, a fully integrated digital inverter is tested while stretched up to 20% elongation. As a proof of the versatility of mesa‐shaped geometry, a biocompatible and stretchable sensor for temperature mapping is also realized. Using pectin, which is a temperature‐sensitive material present in plant cells, the response of the sensor shows current modulation from 13 to 28 °C and functionality up to 15% strain. These results demonstrate the performance of highly flexible electronics for a broad variety of applications, including smart skin and health monitoring.  相似文献   
22.
The development of a mechatronic tactile stimulation platform for touch studies is presented. The platform was developed for stimulation of the fingertip using textured surfaces, providing repeatable tangential sliding motion of stimuli with controlled indentation force. Particular requirements were addressed to make the platform suitable for neurophysiological studies in humans with particular reference to electrophysiological measurements, but allowing a variety of other studies too, such as psychophysical, tribological and artificial touch ones. The design of the mechatronic tactile stimulator is detailed, as well as the performance in tracking reference trajectories. Using microneurography, we recorded from human tactile afferents and validated the platform compatibility with the exacting demands of electrophysiological methods, comprising the absence of spurious vibrations and the lack of relevant electromagnetic interference.  相似文献   
23.
The influence of saliva on aroma release from white and red wines was studied in a model mouth system. Aroma compounds were analysed in the dynamic headspace of wines by solid phase micro extraction/gas chromatography with flame ionization detection. Volatile compounds were identified by solid phase micro extraction/gas chromatography-mass spectrometry, resulting in a total of 43 compounds in white wine and 41 in red wine. The results showed a greater influence of saliva on aroma release in white wine than red wine. In white wine treated with human saliva, esters and fusel alcohols, responsible for fruity and fusel oil odours, were reduced of 32–80%; by contrast, the concentration of 2-phenylethanol and furfural, responsible for rose and toasted almond notes, increased by 27% and by 155%, respectively. In red wine, treated with human saliva, only a few esters decrease, with a reduction of 22–51% due to protein-binding ability of polyphenols that are able to inhibit the activity of the saliva. C-13 norisoprenoids, vitispirane (eucalyptol) and TDN (kerosene), decreased both in white and red wine, showing a comparable variation while, for β-damascenone, the variation was insignificant.  相似文献   
24.
25.
Adrenal incidentalomas (AIs) are incidentally discovered adrenal neoplasms. Overt endocrine secretion (glucocorticoids, mineralocorticoids, and catecholamines) and malignancy (primary or metastatic disease) are assessed at baseline evaluation. Size, lipid content, and washout characterise benign AIs (respectively, <4 cm, <10 Hounsfield unit, and rapid release); nonetheless, 30% of adrenal lesions are not correctly indicated. Recently, image-based texture analysis from computed tomography (CT) may be useful to assess the behaviour of indeterminate adrenal lesions. We performed a systematic review to provide the state-of-the-art of texture analysis in patients with AI. We considered 9 papers (from 70 selected), with a median of 125 patients (range 20–356). Histological confirmation was the most used criteria to differentiate benign from the malignant adrenal mass. Unenhanced or contrast-enhanced data were available in all papers; TexRAD and PyRadiomics were the most used software. Four papers analysed the whole volume, and five considered a region of interest. Different texture features were reported, considering first- and second-order statistics. The pooled median area under the ROC curve in all studies was 0.85, depicting a high diagnostic accuracy, up to 93% in differentiating adrenal adenoma from adrenocortical carcinomas. Despite heterogeneous methodology, texture analysis is a promising diagnostic tool in the first assessment of patients with adrenal lesions.  相似文献   
26.
Mature T-cell lymphomas (MTCLs) represent a heterogeneous group of aggressive non-Hodgkin lymphomas comprising different entities. Anthracycline-based regimens are considered the standard of care in the front-line treatment. However, responses to these approaches have been neither adequate nor durable, and new treatment strategies are urgently needed to improve survival. Genomic instability is a common feature of cancer cells and can be caused by aberrations in the DNA damage response (DDR) and DNA repair mechanisms. Consistently, molecules involved in DDR are being targeted to successfully sensitize cancer cells to chemotherapy. Recent studies showed that some hematological malignancies display constitutive DNA damage and intrinsic DDR activation, but these features have not been investigated yet in MTCLs. In this study, we employed a panel of malignant T cell lines, and we report for the first time the characterization of intrinsic DNA damage and basal DDR activation in preclinical models in T-cell lymphoma. Moreover, we report the efficacy of targeting the apical kinase ATM using the inhibitor AZD0156, in combination with standard chemotherapy to promote apoptotic cell death. These findings suggest that DDR is an attractive pathway to be pharmacologically targeted when developing novel therapies and improving MTCL patients’ outcomes.  相似文献   
27.
The autonomic nervous system (ANS) and the immune system are deeply interrelated. The ANS regulates both innate and adaptive immunity through the sympathetic and parasympathetic branches, and an imbalance in this system can determine an altered inflammatory response as typically observed in chronic conditions such as systemic autoimmune diseases. Rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis all show a dysfunction of the ANS that is mutually related to the increase in inflammation and cardiovascular risk. Moreover, an interaction between ANS and the gut microbiota has direct effects on inflammation homeostasis. Recently vagal stimulation techniques have emerged as an unprecedented possibility to reduce ANS dysfunction, especially in chronic diseases characterized by pain and a decreased quality of life as well as in chronic inflammation.  相似文献   
28.
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.  相似文献   
29.
In the clinical management of solid tumors, the possibility to successfully couple the regeneration of injured tissues with the elimination of residual tumor cells left after surgery could open doors to new therapeutic strategies. In this work, we present a composite hydrogel–electrospun nanofiber scaffold, showing a modular architecture for the delivery of two pharmaceutics with distinct release profiles, that is potentially suitable for local therapy and post-surgical treatment of solid soft tumors. The composite was obtained by coupling gelatin hydrogels to poly(ethylene oxide)/poly(butylene terephthalate) block copolymer nanofibers. Results of the scaffolds’ characterization, together with the analysis of gelatin and drug release kinetics, displayed the possibility to modulate the device architecture to control the release kinetics of the drugs, also providing evidence of their activity. In vitro analyses were also performed using a human epithelioid sarcoma cell line. Furthermore, publicly available expression datasets were interrogated. Confocal imaging showcased the nontoxicity of these devices in vitro. ELISA assays confirmed a modulation of IL-10 inflammation-related cytokine supporting the role of this device in tissue repair. In silico analysis confirmed the role of IL-10 in solid tumors including 262 patients affected by sarcoma as a negative prognostic marker for overall survival. In conclusion, the developed modular composite device may provide a key-enabling technology for the treatment of soft tissue sarcoma.  相似文献   
30.
The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号