首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75364篇
  免费   17648篇
  国内免费   2445篇
电工技术   4122篇
技术理论   3篇
综合类   2763篇
化学工业   22033篇
金属工艺   2397篇
机械仪表   3356篇
建筑科学   4322篇
矿业工程   1443篇
能源动力   1942篇
轻工业   10198篇
水利工程   1342篇
石油天然气   1597篇
武器工业   484篇
无线电   11445篇
一般工业技术   15189篇
冶金工业   2388篇
原子能技术   479篇
自动化技术   9954篇
  2024年   264篇
  2023年   860篇
  2022年   1867篇
  2021年   2610篇
  2020年   3194篇
  2019年   4432篇
  2018年   4526篇
  2017年   5168篇
  2016年   5328篇
  2015年   6065篇
  2014年   6427篇
  2013年   7809篇
  2012年   5920篇
  2011年   5542篇
  2010年   5260篇
  2009年   4768篇
  2008年   4234篇
  2007年   3781篇
  2006年   3121篇
  2005年   2541篇
  2004年   2147篇
  2003年   1940篇
  2002年   1893篇
  2001年   1625篇
  2000年   1432篇
  1999年   725篇
  1998年   323篇
  1997年   276篇
  1996年   229篇
  1995年   171篇
  1994年   162篇
  1993年   129篇
  1992年   103篇
  1991年   93篇
  1990年   67篇
  1989年   66篇
  1988年   45篇
  1987年   32篇
  1986年   36篇
  1985年   31篇
  1984年   14篇
  1983年   27篇
  1982年   21篇
  1981年   25篇
  1980年   18篇
  1979年   16篇
  1978年   14篇
  1977年   13篇
  1976年   15篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 1 毫秒
101.
Porous poly(vinyl alcohol) (PVA) membranes were prepared by a phase‐inversion method. The influence of chemical crosslinking and heat treatments on the swelling degree, resistance to compaction, mechanical strength, and morphology of porous PVA membranes was extensively studied. The crosslinking degree and crystallinity of the membranes, calculated from IR spectra, increased with the treatment time. The porosity, calculated on the basis of swelling experiments, showed a decreasing trend for heat‐treated membranes but remained almost at a constant value for crosslinked membranes. Such a change was further proved with scanning electron microscopy pictures. The behavior was explained by the rearrangement of PVA chains during the heat‐treatment process, which led to morphological changes in the membranes. The mechanical properties of the porous membranes in dry and wet states were measured, and a great difference was observed between crosslinked and heat‐treated membranes in the dry and wet states. The crosslinked membranes showed good mechanical properties in the dry state but became fragile in the wet state. On the contrary, the heat‐treated membranes were more flexible in the wet state than in the dry state. This change was explained by the turnaround of inner stress in the systems during the swelling process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
102.
Wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and wear‐particle‐induced osteolysis and bone resorption are the major factors causing the failure of total joint replacements. It is feasible to improve the lubrication and reduce the wear of artificial joints. We need further understanding of the lubrication mechanism of the synovial fluid. The objective of this study is to evaluate the lubricating ability of three major components in the synovial fluid: albumin, globulin, and phospholipids. An accelerated wear testing procedure in which UHMWPE is rubbed against a microfabricated surface with controlled asperities has been developed to evaluate the lubrication behavior. An analysis of the wear particle dimensions and wear amount of the tests has provided insights for comparing their lubrication performance. It is concluded that the presence of biomolecules at the articulating interface may reduce friction. A higher concentration of a biological lubricant leads to a decrease in the wear particle width. In addition, in combination with the wear results and mechanical analysis, the roles of individual biomolecules contributing to friction and wear at the articulating interface are discussed. These results can help us to identify the role of the biomolecules in the boundary lubrication of artificial joints, and further development of lubricating additives for artificial joints may be feasible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
103.
The moisture uptake of polymers and composites has increasing significance where these materials are specified for invasive, long‐term medical applications. Here we analyze mass gain and the ensuing degradation mechanisms in phosphate glass fiber reinforced poly‐?‐caprolactone laminates. Specimens were manufactured using in situ polymerization of ?‐caprolactone around a bed of phosphate glass fibers. The latter were sized with 3‐aminopropyltriethoxysilane to control the rate of modulus degradation. Fiber content was the main variable in the study, and it was found that the moisture diffusion coefficient increased significantly with increasing fiber volume fraction. Diffusion, plasticization, and leaching of constituents appear to be the dominant aspects of the process over these short‐term tests. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
104.
Quantitative analysis of isothermal crystallization kinetics of PLA/clay nanocomposite and PLA/clay/regenerated cellulose fiber (RCF) hybrid composite has been conducted. The crystallization rate constant (k) according to Avrami equation was higher in PLA/clay nanocomposite than in PLA/clay/RCF hybrid composite at the same crystallization temperature. The equilibrium melting temperature obtained by Hoffman–Weeks equation was almost same in both composites, whereas stability parameter was greater in hybrid composite than in nanocomposite. Activation energy of hybrid composite for crystallization was larger than that of nanocomposite. The value of nucleation parameter (Kg) and surface free energy (se) of hybrid composite were larger than nanocomposite, indicating that hybrid composite has a less folding regularity than nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
105.
The transitions and reactions involved in the thermal treatment of several commercial azodicarbonamides (ADC) in an inert atmosphere have been studied by dynamic thermogravimetry analysis (TGA), mass spectrometry and Fourier transform infrared (FTIR) spectroscopy. A pseudo‐mechanistic model, involving several competitive and non‐competitive reactions, has been suggested and applied to the correlation of the weight loss data. The model applied is capable of accurately representing the different processes involved, and can be of great interest in the understanding and quantification of such phenomena, including the simulation of the instantaneous amount of gases evolved in a foaming process. In addition, a brief discussion on the methodology related to the mathematical modeling of TGA data is presented, taking into account the complex thermal behaviour of the ADC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
106.
A novel mixed‐mode expanded bed adsorbent with anion‐exchange properties was explored with benzylamine as the functional ligand. The cellulose composite matrix, densified with stainless steel powder, was prepared with the method of water‐in‐oil suspension thermal regeneration. High activation levels of the cellulose matrix were obtained with allyl bromide because of the relative inertness of the allyl group under the conditions of the activation reaction. After the formation of the bromohydrin with N‐bromosuccinimide and coupling with benzylamine, the activated matrix was derived to function as a mixed‐mode adsorbent containing both hydrophobic and ionic groups. The protein adsorption capacity was investigated with bovine serum albumin as a model protein. The results indicated that the prepared adsorbent could bind bovine serum albumin with a high adsorption capacity, and it showed salt tolerance. Effective desorption was achieved by a pH adjustment across the isoelectric point of the protein. The interactions between the cell and adsorbent were studied, and the bioadhesion was shielded by the adjustment of the salt concentration above 0.1M. Stable fluidization in the expanded bed was obtained even in a 2% (dry weight) yeast suspension. The direct capture of target proteins from a biomass‐containing feedstock without extra dilution steps could be expected with the mixed‐mode adsorbent prepared in this work, and this would be especially appropriate for expanded bed adsorption applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
107.
Blends of polyamide and high‐density polyethylene show adequate properties for a large range of applications: they are used for the production of filaments, containers, and molding resins. The effect of the addition of 2 wt % of a compatibilizer, maleic anhydride grafted polyethylene, to the blend was studied and compared to the use of postconsumer polyethylene. The samples were extruded with single‐ and twin‐screw extruders with 25, 50, or 75 wt % f polyethylene, and the test specimens, molded by injection, were characterized by stress–strain tests, thermal properties, and morphologies. Processing the blends with postconsumer polyethylene in both extruders improved the mechanical properties in comparison to the blends processed with high‐density polyethylene and the compatibilizer. The morphologies of these blends showed that there was a decrease in the domain size of the disperse phase with the use of the compatibilizer or postconsumer polyethylene. The results indicate that for this blend, postconsumer polyethylene substituted, with advantages, for the necessity of a compatibilizer and the use of the high‐density polyethylene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   
108.
The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L ‐lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH‐1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
109.
Sheet molding compound (SMC) is a fiber‐reinforced polymeric composite. It is often used in automotive, marine, and industrial applications over other materials because of its high strength to density ratio, resistance to corrosion, and low cost. There is a demand in the SMC industry to be able to characterize SMC processability. This is particularly true for heavy truck body panels, one of the fastest growing applications of SMC. Because of their large size and high strength requirement, the molding forces have a major influence in the molding cycle. Also because of the long flow paths involved, the ability of the paste to carry glass needs to be properly characterized when developing new SMC materials. In this article, we demonstrate the benefits of using spiral flow as a processability tester. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
110.
Scaffold‐guided tissue engineering based on synthetic and natural occurring polymers has gained many interests in recent year. In this study, the development of a chitosan‐heparin artificial extracellular matrix (AECM) is reported. Three‐dimensional, macroporous composite AECMs composed of heparin (Hep) and chitosan (Chito) were prepared by an interpolyelectrolyte complex/lyophilization method. The Chito‐Hep composite AECMs were, respectively, crosslinked with glutaraldehyde, as well as cocrosslinked with N,N‐(3‐dimethylaminopropyl)‐N′‐ethyl carbodiimide (EDC/NHS) and N‐hydroxysuccinimide (NHS). The crosslinking reactions were examined by FT‐IR analysis. In physiological buffer solution (PBS), the EDC/NHS‐crosslinked Chito‐Hep composite AECM showed a relative lower water retention ratio than its glutaraldehyde‐crosslinked counterparts. The EDC/NHS‐crosslinked Chito‐Hep composite AECMs showed excellent biocompatibility, according to the results of the in vitro cytotoxic test. This result suggested that the EDC/NHS‐crosslinked Chito‐Hep composite AECMs might be a potential biomaterial for scaffold‐guided tissue engineering applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号