The depletion of higher alkanes from methane is a key aspect during the conditioning of natural gases or accompanying gases. Membrane technologies could be used as alternative to energy and cost intensive purifications. Against this background the influence of membrane geometry, composition of the gas mixture as well as temperature and pressure was investigated in separation experiments for methane/n‐butane mixtures using MFI membranes. 相似文献
PA nanocomposites are prepared from clays organophilized with a phosphonium and an ammonium salt, and sodium montmorillonite is used as reference. The analysis of mechanical and micromechanical properties of the composites reveal that several micromechanical deformation processes occur in the PA/MMT composites. The matrix cavitates at relatively small stress. Processes related to non‐exfoliated clay structural units are initiated at larger stresses. Sound is emitted mainly by the fracture of particles, but debonding may also occur. The plastic deformation of the matrix dominates at larger stresses and deformations. The various local deformations are independent of each other and composite properties are not determined by silicate related processes but by the deformation of the matrix.
Highly sensitive AC magnetic field sensors are presented using magnetoelectric composites consisting of magnetostrictive and piezoelectric phases. They are offering passive nature, high sensitivity, large effect enhancement at mechanical resonance, and large linear dynamic range. Thin‐film magnetoelectric 2‐2 composites benefit from perfect coupling between the piezoelectric and magnetostrictive phases and from the reduction in size which is essential for high spatial resolution. Their design uses AlN and a plate capacitor or PZT with interdigital electrodes and magnetostrictive amorphous FeCoSiB single layers or exchanged biased multilayers. At mechanical resonance and depending on the geometry, extremely high ME coefficients of up to 9.7 kV/cm Oe in air and up to 19 kV/cm Oe under vacuum were obtained. To avoid external DC magnetic bias fields, composites consisting of exchanged biased multilayers serving as the magnetostrictive component with a maximum magnetoelectric coefficient at zero magnetic bias field are employed. Furthermore, the anisotropic response of these exchanged biased composites can be utilized for three‐dimensional vector field sensing. Sensitivity and noise of the sensors revealed limits of detection as good as to 2.3 pT/Hz1/2 at mechanical resonance. Sensitivity between 0.1 and 1000 Hz outside resonance can be enhanced through frequency conversion using AC magnetic bias fields. 相似文献
The minimum film formation temperature (MFFT) is the minimum drying temperature needed for a latex coating to coalesce into an optically clear, dense crack-free film. To better understand the interplay of forces near this critical temperature, cryogenic scanning electron microscopy (cryoSEM) was used to track the latex particle deformation and water migration in coatings dried at temperatures just above and below the MFFT. Although the latex particles completely coalesced at both temperatures by the end of the drying process, it was discovered that particle deformation during the early drying stages was drastically different. Below the MFFT, cracks initiated just as menisci began to recede into the packing of consolidated particles, whereas above the MFFT, partial particle deformation occurred before menisci entered the coating and cracks were not observed. The spacing between cracks measured in coatings dried at varying temperatures decreased with decreasing drying temperature near the MFFT, whereas it was independent of temperature below a critical temperature. Finally, the addition of small amounts of silica aggregates was found to lessen the cracking of latex coatings near the MFFT without adversely affecting their optical clarity. 相似文献
Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near‐infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm?2 of the transition‐metal‐based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal‐to‐noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. 相似文献
Zeolite synthesis is driven by structure-directing agents, such as tetrapropyl ammonium ions (TPA+) for Silicalite-1 and ZSM-5. However, the guiding role of these organic templates in the complex assembly to highly ordered
frameworks remains unclear, limiting the prospects for advanced material synthesis. In this work, both static ab initio and
dynamic classical modeling techniques are employed to provide insight into the interactions between TPA+ and Silicalite-1 precursors. We find that as soon as the typical straight 10-ring channel of Silicalite-1 or ZSM-5 is formed
from smaller oligomers, the TPA+ template is partially squeezed out of the resulting cavity. Partial retention of the template in the cavity is, however,
indispensable to prevent collapse of the channel and subsequent hydrolysis.