全文获取类型
收费全文 | 7934篇 |
免费 | 460篇 |
国内免费 | 11篇 |
专业分类
电工技术 | 61篇 |
综合类 | 18篇 |
化学工业 | 1928篇 |
金属工艺 | 185篇 |
机械仪表 | 156篇 |
建筑科学 | 333篇 |
矿业工程 | 27篇 |
能源动力 | 236篇 |
轻工业 | 725篇 |
水利工程 | 118篇 |
石油天然气 | 22篇 |
无线电 | 466篇 |
一般工业技术 | 1719篇 |
冶金工业 | 1207篇 |
原子能技术 | 21篇 |
自动化技术 | 1183篇 |
出版年
2024年 | 40篇 |
2023年 | 77篇 |
2022年 | 142篇 |
2021年 | 221篇 |
2020年 | 191篇 |
2019年 | 201篇 |
2018年 | 220篇 |
2017年 | 208篇 |
2016年 | 244篇 |
2015年 | 187篇 |
2014年 | 314篇 |
2013年 | 563篇 |
2012年 | 467篇 |
2011年 | 674篇 |
2010年 | 453篇 |
2009年 | 423篇 |
2008年 | 475篇 |
2007年 | 438篇 |
2006年 | 366篇 |
2005年 | 326篇 |
2004年 | 267篇 |
2003年 | 251篇 |
2002年 | 229篇 |
2001年 | 114篇 |
2000年 | 102篇 |
1999年 | 101篇 |
1998年 | 91篇 |
1997年 | 91篇 |
1996年 | 76篇 |
1995年 | 84篇 |
1994年 | 81篇 |
1993年 | 56篇 |
1992年 | 67篇 |
1991年 | 27篇 |
1990年 | 31篇 |
1989年 | 42篇 |
1988年 | 42篇 |
1987年 | 40篇 |
1986年 | 35篇 |
1985年 | 54篇 |
1984年 | 45篇 |
1983年 | 41篇 |
1982年 | 40篇 |
1981年 | 25篇 |
1980年 | 28篇 |
1979年 | 20篇 |
1978年 | 21篇 |
1977年 | 18篇 |
1976年 | 17篇 |
1975年 | 11篇 |
排序方式: 共有8405条查询结果,搜索用时 15 毫秒
81.
Carlota Oleaga Andrea Lavado Anne Riu Sandra Rothemund Carlos A. Carmona‐Moran Keisha Persaud Andrew Yurko Jennifer Lear Narasimhan Sriram Narasimhan Christopher J. Long Frank Sommerhage Lee Richard Bridges Yunqing Cai Candace Martin Mark T. Schnepper Arindom Goswami Reine Note Jessica Langer Silvia Teissier Jos Cotovio James J. Hickman 《Advanced functional materials》2019,29(8)
The goal of human‐on‐a‐chip systems is to capture multiorgan complexity and predict the human response to compounds within physiologically relevant platforms. The generation and characterization of such systems is currently a focal point of research given the long‐standing inadequacies of conventional techniques for predicting human outcome. Functional systems can measure and quantify key cellular mechanisms that correlate with the physiological status of a tissue, and can be used to evaluate therapeutic challenges utilizing many of the same endpoints used in animal experiments or clinical trials. Culturing multiple organ compartments in a platform creates a more physiologic environment (organ–organ communication). Here is reported a human 4‐organ system composed of heart, liver, skeletal muscle, and nervous system modules that maintains cellular viability and function over 28 days in serum‐free conditions using a pumpless system. The integration of noninvasive electrical evaluation of neurons and cardiac cells and mechanical determination of cardiac and skeletal muscle contraction allows the monitoring of cellular function, especially for chronic toxicity studies in vitro. The 28‐day period is the minimum timeframe for animal studies to evaluate repeat dose toxicity. This technology can be a relevant alternative to animal testing by monitoring multiorgan function upon long‐term chemical exposure. 相似文献
82.
Larry Zhao Henny VoldersMikhail Baklanov Zsolt T?keiMarianna Pantouvaki Christopher J. WilsonEls Van Besien Gerald P. BeyerCor Claeys 《Microelectronic Engineering》2011,88(9):3030-3034
A unique test structure based on a metal-insulator-semiconductor planar capacitor (Pcap) design was used to investigate several aspects of metal barrier-induced low-k damage. A special term called Effective Damage Thickness was introduced to describe the degree of damage. Ta(N) barrier was deposited on various dielectric films with porosity up to 32%. It has been found that the Effective Damage Thickness increases as the porosity increases. The damage is influenced more by the porosity of low-k films than the film density. Furthermore, the damage was modulated by Ta(N) deposition conditions. More damage was observed when higher target and/or substrate bias power was used, suggesting that the ion energy of the barrier material plays an important role in the low-k damage mechanism. A same degree of damage was observed for Ta barrier as for Ta(N), suggesting that Ta(N) deposition-induced low-k damage was primarily caused by Ta ions not nitrogen. Impact of Ru(Ta) and Cu(Mn) self forming barrier on low-k damage was also investigated. Among all the barriers studied in this work, the Ta-based barriers caused the most damage while the Cu(Mn) self forming barrier had the least damage to the low-k. The atomic masses for Ta, Ru, and Cu are 181, 101, and 64, respectively, corresponding with the observed degree of damage in the low-k material. 相似文献
83.
Unlocking the dynamic inner workings of the brain continues to remain a grand challenge of the 21st century. To this end, functional neuroimaging modalities represent an outstanding approach to better understand the mechanisms of both normal and abnormal brain functions. The ability to image brain function with ever increasing spatial and temporal resolution has made a significant leap over the past several decades. Further delineation of functional networks could lead to improved understanding of brain function in both normal and diseased states. This paper reviews recent advancements and current challenges in dynamic functional neuroimaging techniques, including electrophysiological source imaging, multimodal neuroimaging integrating fMRI with EEG/MEG, and functional connectivity imaging. 相似文献
84.
Christopher C. S. Chan Chao Ma Xinhui Zou Zengshan Xing Guichuan Zhang Hin-Lap Yip Robert A. Taylor Yan He Kam Sing Wong Philip C. Y. Chow 《Advanced functional materials》2021,31(48):2107157
Transient optical spectroscopy is used to quantify the temperature-dependence of charge separation and recombination dynamics in P3TEA:SF-PDI2 and PM6:Y6, two non-fullerene organic photovoltaic (OPV) systems with a negligible driving force and high photocurrent quantum yields. By tracking the intensity of the transient electroabsorption response that arises upon interfacial charge separation in P3TEA:SF-PDI2, a free charge generation rate constant of ≈2.4 × 1010 s−1 is observed at room temperature, with an average energy of ≈230 meV stored between the interfacial charge pairs. Thermally activated charge separation is also observed in PM6:Y6, and a faster charge separation rate of ≈5.5 × 1010 s−1 is estimated at room temperature, which is consistent with the higher device efficiency. When both blends are cooled down to cryogenic temperature, the reduced charge separation rate leads to increasing charge recombination either directly at the donor-acceptor interface or via the emissive singlet exciton state. A kinetic model is used to rationalize the results, showing that although photogenerated charges have to overcome a significant Coulomb potential to generate free carriers, OPV blends can achieve high photocurrent generation yields given that the thermal dissociation rate of charges outcompetes the recombination rate. 相似文献
85.
Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents 下载免费PDF全文
Michelle A. Chavis Detlef‐M. Smilgies Ulrich B. Wiesner Christopher K. Ober 《Advanced functional materials》2015,25(20):3057-3065
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, solvent vapor annealing in supported thin films of poly(2‐hydroxyethyl methacrylate)‐block‐poly(methyl methacrylate) [PHEMA‐b‐PMMA] by means of grazing incidence small angle X‐ray scattering (GISAXS) is investigated. A spin‐coated thin film of a lamellar block copolymer is solvent vapor annealed to induce microphase separation and improve the long‐range order of the self‐assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents, which are chosen to be preferential for each block, enables selective formation of ordered lamellae, gyroid, hexagonal, or spherical morphologies from a single‐block copolymer with a fixed volume fraction. The selected microstructure is then kinetically trapped in the dry film by rapid drying. This paper describes what is thought to be the first reported case where in situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. 相似文献
86.
Efficiency Enhancement of Single‐Walled Carbon Nanotube‐Silicon Heterojunction Solar Cells Using Microwave‐Exfoliated Few‐Layer Black Phosphorus 下载免费PDF全文
Munkhjargal Bat‐Erdene Munkhbayar Batmunkh Sherif Abdulkader Tawfik Marco Fronzi Michael J. Ford Cameron J. Shearer LePing Yu Mahnaz Dadkhah Jason R. Gascooke Christopher T. Gibson Joseph G. Shapter 《Advanced functional materials》2017,27(48)
Carbon nanotube‐silicon (CNT‐Si)‐based heterojunction solar cells (HJSCs) are a promising photovoltaic (PV) system. Herein, few‐layer black phosphorus (FL‐BP) sheets are produced in N‐methyl‐2‐pyrrolidone (NMP) using microwave‐assisted liquid‐phase exfoliation and introduced into the CNTs‐Si‐based HJSCs for the first time. The NMP‐based FL‐BP sheets remain stable after mixing with aqueous CNT dispersion for device fabrication. Due to their unique 2D structure and p‐type dominated conduction, the FL‐BP/NMP incorporated CNT‐Si devices show an impressive improvement in the power conversion efficiency from 7.52% (control CNT‐Si cell) to 9.37%. Our density‐functional theory calculation reveals that lowest unoccupied molecular orbital (LUMO) of FL‐BP is higher in energy than that of single‐walled CNT. Therefore, we observed a reduction in the orbitals localized on FL‐BP upon highest occupied molecular orbital to LUMO transition, which corresponds to an improved charge transport. This study opens a new avenue in utilizing 2D phosphorene nanosheets for next‐generation PVs. 相似文献
87.
Scully CG Lee J Meyer J Gorbach AM Granquist-Fraser D Mendelson Y Chon KH 《IEEE transactions on bio-medical engineering》2012,59(2):303-306
We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. 相似文献
88.
Christoph A. Spiegel Marc Hippler Alexander Münchinger Martin Bastmeyer Christopher Barner‐Kowollik Martin Wegener Eva Blasco 《Advanced functional materials》2020,30(26)
3D printing of adaptive and dynamic structures, also known as 4D printing, is one of the key challenges in contemporary materials science. The additional dimension refers to the ability of 3D printed structures to change their properties—for example, shape—over time in a controlled fashion as the result of external stimulation. Within the last years, significant efforts have been undertaken in the development of new responsive materials for printing at the macroscale. However, 4D printing at the microscale is still in its early stages. Thus, this progress report will focus on emerging materials for 4D printing at the microscale as well as their challenges and potential applications. Hydrogels and liquid crystalline and composite materials have been identified as the main classes of materials representing the state of the art of the growing field. For each type of material, the challenges and critical barriers in the material design and their performance in 4D microprinting are discussed. Importantly, further necessary strategies are proposed to overcome the limitations of the current approaches and move toward their application in fields such as biomedicine, microrobotics, or optics. 相似文献
89.
Maged Abdelsamie Junwei Xu Karsten Bruening Christopher J. Tassone Hans‐Georg Steinrück Michael F. Toney 《Advanced functional materials》2020,30(38)
Understanding crystallization processes and their pathways in metal‐halide perovskites is of crucial importance as this strongly affects the film microstructure, its stability, and device performance. While many approaches are developed to control perovskite formation, the mechanisms of film formation are still poorly known. Using time‐resolved in situ grazing incidence wide‐angle X‐ray scattering, the film formation of perovskites is investigated with average stoichiometry Cs0.15FA0.85PbI3, where FA is formamidinium, using the popular antisolvent dropping and gas jet treatments and this is contrasted with untreated films. i) The crystallization pathways during spin coating, ii) the subsequent postdeposition thermal annealing, and iii) crystallization during blade coating are studied. The findings reveal that the formation of a nonperovskite FAPbI3 phase during spin coating is initially dominant regardless of the processing and that the processing treatment (e.g., antisolvent dropping, gas jet) has a significant impact on the as‐cast film structure and affects the phase evolution during subsequent thermal treatment. It is shown that blade coating can be used to overcome the nonperovskite phase formation via solvothermal direct crystallization of perovskite phase. This work shows how real‐time investigation of perovskite formation can help to establish processing–microstructure–functionality relationships. 相似文献