首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7857篇
  免费   490篇
  国内免费   10篇
电工技术   59篇
综合类   18篇
化学工业   1942篇
金属工艺   184篇
机械仪表   157篇
建筑科学   330篇
矿业工程   27篇
能源动力   233篇
轻工业   714篇
水利工程   112篇
石油天然气   21篇
无线电   459篇
一般工业技术   1693篇
冶金工业   1208篇
原子能技术   21篇
自动化技术   1179篇
  2024年   12篇
  2023年   64篇
  2022年   139篇
  2021年   208篇
  2020年   168篇
  2019年   201篇
  2018年   220篇
  2017年   208篇
  2016年   244篇
  2015年   187篇
  2014年   314篇
  2013年   563篇
  2012年   467篇
  2011年   677篇
  2010年   453篇
  2009年   423篇
  2008年   476篇
  2007年   438篇
  2006年   366篇
  2005年   326篇
  2004年   267篇
  2003年   251篇
  2002年   230篇
  2001年   115篇
  2000年   102篇
  1999年   102篇
  1998年   91篇
  1997年   91篇
  1996年   78篇
  1995年   85篇
  1994年   81篇
  1993年   56篇
  1992年   69篇
  1991年   28篇
  1990年   34篇
  1989年   42篇
  1988年   45篇
  1987年   43篇
  1986年   36篇
  1985年   55篇
  1984年   46篇
  1983年   42篇
  1982年   41篇
  1981年   26篇
  1980年   31篇
  1979年   20篇
  1978年   22篇
  1977年   18篇
  1976年   17篇
  1975年   11篇
排序方式: 共有8357条查询结果,搜索用时 15 毫秒
61.
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.  相似文献   
62.
Nanosized gold particles (27 +/− 3 nm) have been proven to be effective in ameliorating the symptoms of mycobacterial-, collagen- and pristane-induced arthritis in rat models. This contrasts with the drug sodium aurothiomalate that was only effective against mycobacterial-induced arthritis but not to the same extent as Au0. Gold in the traditional Indian Ayurvedic medicine,Swarna bhasma (gold ash), has been characterized as globular particles of gold with an average size of 56–57 nm.  相似文献   
63.
Styrene/hexadecane miniemulsions were polymerized at 50°C using a redox initiator. The miniemulsions and their corresponding latexes were characterized in terms of size, polymerization rate, and surface properties. The resulting data were analyzed to elucidate the miniemulsion stabilization and polymerization mechanisms. It was found that the free surfactant concentration exceeded the critical micelle concentration when large amounts of surfactant (60 mM sodium lauryl sulfate) were used, resulting in simultaneous micellar and droplet nucleation. Most surfactant was on the surface of the droplets (85%) or particles (95%). The fractional surface coverage was proportional to the surfactant concentration to the 0.55 power. Using a particle diameter equation, the number of particles was calculated to be proportional to the surfactant concentration to the 1.35 power. Through direct particle size measurements, a power of 1.38 was confirmed. The rate of polymerization was determined by reaction calorimetry to be proportional to the number of particles to the 0.59 power, in contrast to classical Smith–Ewart kinetics for conventional emulsions (1.0 power). The average number of radicals per particle was estimated from the rate and number data, and varied with the particle diameter to the 0.97 power. The observed kinetic dependencies were validated through an extension of Smith–Ewart theory. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3987–3993, 2003  相似文献   
64.
The major morphological changes during polymer blending occur during the initial softening stage. This work explains the evolution of phase morphology of polymer blends from pellets to submicron particles in a co-rotating twin-screw extruder. The extruder was opened and blend samples were taken along its length. The major phase component was extracted by means of a selective solvent so that the dispersed phase morphology could be viewed directly by using scanning electron microscopy. The two systems studied were 80:20 polystyrene/amorphous polyamide and 80:20 polystyrene/polypropylene. In both systems, the initial morphology consisted of sheets of dispersed phase. Holes form in the sheets, and these holes grow as a result of interfacial tension forces until they coalesce with each other, forming thin ligaments. These fluid ligaments are unstable and break up via mixer shear forces. Very large changes in dispersed phase size are observed during the softening stage. The particle size changes less after the polymers are completely melted. The extruder results are compared to results from a batch mixer. The same dispersed phase sheeting mechanism is seen in the initial morphology in the batch mixer and the breakup of the dispersed phase domains parallels the breakup seen in the extruder.  相似文献   
65.
66.
A good model of object shape is essential in applications such as segmentation, detection, inpainting and graphics. For example, when performing segmentation, local constraints on the shapes can help where object boundaries are noisy or unclear, and global constraints can resolve ambiguities where background clutter looks similar to parts of the objects. In general, the stronger the model of shape, the more performance is improved. In this paper, we use a type of deep Boltzmann machine (Salakhutdinov and Hinton, International Conference on Artificial Intelligence and Statistics, 2009) that we call a Shape Boltzmann Machine (SBM) for the task of modeling foreground/background (binary) and parts-based (categorical) shape images. We show that the SBM characterizes a strong model of shape, in that samples from the model look realistic and it can generalize to generate samples that differ from training examples. We find that the SBM learns distributions that are qualitatively and quantitatively better than existing models for this task.  相似文献   
67.
The use of comparison functions has become standard in systems and control theory, particularly for the purposes of studying stability properties. The use of these functions typically allows elegant and succinct statements of stability properties such as asymptotic stability and input-to-state stability and its several variants. Furthermore, over the last 20 years several inequalities involving these comparison functions have been developed that simplify their manipulation in the service of proving more significant results. Many of these inequalities have appeared in the body of proofs or in appendices of various papers. Our goal herein is to collect these inequalities in one place.  相似文献   
68.
Biomimetic strain hardening in interpenetrating polymer network hydrogels   总被引:1,自引:0,他引:1  
In this paper, we present the systematic development of mechanically enhanced interpenetrating polymer network (IPN) hydrogels with Young's moduli rivaling those of natural load-bearing tissues. The IPNs were formed by synthesis of a crosslinked poly(acrylic acid) (PAA) network within an end-linked poly(ethylene glycol) (PEG) macromonomer network. The strain-hardening behavior of these PEG/PAA IPNs was studied through uniaxial tensile testing and swelling measurements. The interaction between the independently crosslinked networks within the IPN was varied by (1) changing the molecular weight of the PEG macromonomer, (2) controlling the degree of PAA ionization by changing pH, and (3) increasing the polymer content in the PAA network. Young's moduli and the maximum stress-at-break of the swollen hydrogels were normalized on the basis of their polymer content. Strain hardening in the IPNs exhibited a strong dependence on the molecular weight of the first network macromonomer, the pH of the swelling buffer, as well as the polymer content of the second network. The results indicate that the mechanical enhancement of these IPNs is mediated by the strain-induced intensity of physical entanglements between the two networks. The strain can be applied either by mechanical deformation or by changing the pH to modulate the swelling of the PAA network. At pHs below the pKa of PAA (4.7), entanglements between PEG and PAA are reinforced by interpolymer hydrogen bonds, yielding IPNs with high fracture strength. At pHs above 4.7, a “pre-stressed” IPN with dramatically enhanced modulus is formed due to ionization-induced swelling of the PAA network within a static PEG network. The modulus enhancement ranged from two-fold to over 10-fold depending on the synthesis conditions used. Variation of the network parameters and swelling conditions enabled “tuning” of the hydrogels' physical properties, yielding materials with water content between 58% and 90% water, tensile strength between 2.0 MPa and 12.0 MPa, and initial Young's modulus between 1.0 MPa and 19.0 MPa. Under physiologic pH and salt concentration, these materials attain “biomimetic” values for initial Young's modulus in addition to high tensile strength and water content. As such, they are promising new candidates for artificial replacement of natural tissues such as the cornea, cartilage, and other load-bearing structures.  相似文献   
69.
Intracellular and extracellular concentrations of citrate and the specific activities of ten different enzymes in Candida curvata D were examined in relation to lipid biosynthesis in batch and continuous culture. Citrate was found to accumulate prior to lipid production and declined markedly as lipid accumulated in batch culture. The cells excreted citrate as the culture became nitrogen-limiting after 30 hr of growth, but little more was expelled after 40 hr when lipid accumulation was more marked. In continuous culture, only low levels of citrate were detected at the lower dilution rates and citrate was completely absent from both the cells and medium above a dilution rate of 0.1/hr. The activity of malic enzyme, malate dehydrogenase and ATP:citrate lyase increased in batch culture on lipid accumulated and, in continuous culture, both malic enzyme and ATP:citrate lyase varied in parallel with the specific rate of lipid synthesis which increased with increasing dilution rate. Activity of malate dehydrogenase, citrate synthase and glucose-6-phosphate dehydrogenase decreased with increasing dilution rate. The regulatory significance of these enzymes in lipid accumulation by C. curvata is discussed.  相似文献   
70.
A key component of a hydrogen fuel cell is a catalyst to dissociate dihydrogen to hydrogen atoms. In the present study, the adsorption of hydrogen on Pt/C fuel cell catalysts has been investigated by inelastic neutron scattering spectroscopy.

Monitoring a clean Pt(50%)/C catalyst with low energy neutron spectroscopy, after exposure to dihydrogen at 20 K, as it was heated to room temperature, showed three distinct temperature regimes: (i) a decrease in intensity from 10 to 60 K, (ii) a rise to a maximum between 60 and 120 K and then (iii) a slow fall-off towards room temperature. We assign the three regions as: (i) desorption of physisorbed dihydrogen, (ii) dissociation of dihydrogen to give an adsorbed layer and (iii) damping of the response by an increasing Debye–Waller factor.

The vibrational INS spectra of a series of Pt/C catalysts prepared under varying conditions were similar indicating that the same types of site are common to all the catalysts, although the relative proportions of each site are sample dependent. Features at 520, 950 and part of the intensity at 1300 cm−1 are assigned to hydrogen on (1 1 1) faces, in good agreement with single crystal data. The mode at 640 cm−1 is assigned as the doubly degenerate asymmetric stretch of Pt(1 0 0) faces with the symmetric stretch near 550 cm−1.

We assign the bending mode of the on-top site to the feature at 470 cm−1. The Pt–H stretch mode was observed at 2079 cm−1. This is a significant result: this is the first time that hydrogen on the on-top sites has been observed on nanosized platinum particles supported on high surface area carbon black. The width of the INS peak is surprisingly large and may give additional information on the type and relative proportions of the crystallographic faces present on the catalyst particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号