This paper presents a 26-Gb/s CMOS optical receiver that is fabricated in 65-nm technology. It consists of a triple-inductive transimpedance amplifier (TIA), direct current (DC) offset cancellation circuits, 3-stage gm-TIA variable-gain amplifiers (VGA), and a reference-less clock and data recovery (CDR) circuit with built-in equalization technique. The TIA/VGA front-end measurement results demonstrate 72-dBΩ transimpedance gain, 20.4-GHz −3-dB bandwidth, and 12-dB DC gain tuning range. The measurements of the VGA’s resistive networks also demonstrate its efficient capability of overcoming the voltage and temperature variations. The CDR adopts a full-rate topology with 12-dB imbedded equalization tuning range. Optical measurements of this chipset achieve a 10−12 BER at 26 Gb/s for a 215−1 PRBS input with a −7.3-dBm input sensitivity. The measurement results with a 10-dB @ 13 GHz attenuator also demonstrate the effectiveness of the gain tuning capability and the built-in equalization. The entire system consumes 140 mW from a 1/1.2-V supply. 相似文献
This paper presents a novel sequential inverse optimal control (SIOC) method for discrete-time systems, which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system. The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption. It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one. The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution. The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space. The effectiveness of the proposed method is demonstrated through simulation results.
Mechanics of Time-Dependent Materials - Creep exerts a significant role in rock engineering safety. In engineering practice, it is helpful to develop a mathematical model representing rock creep... 相似文献
Mechanics of Time-Dependent Materials - Despite being investigated for many years, the Mullins effect is considered a major obstacle in understanding the behavior of rubber, especially in... 相似文献