首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4975篇
  免费   514篇
  国内免费   22篇
电工技术   104篇
综合类   18篇
化学工业   1460篇
金属工艺   181篇
机械仪表   313篇
建筑科学   90篇
矿业工程   5篇
能源动力   242篇
轻工业   292篇
水利工程   19篇
石油天然气   14篇
武器工业   7篇
无线电   778篇
一般工业技术   1210篇
冶金工业   219篇
原子能技术   47篇
自动化技术   512篇
  2024年   7篇
  2023年   50篇
  2022年   94篇
  2021年   134篇
  2020年   140篇
  2019年   122篇
  2018年   186篇
  2017年   197篇
  2016年   207篇
  2015年   201篇
  2014年   257篇
  2013年   336篇
  2012年   353篇
  2011年   437篇
  2010年   318篇
  2009年   361篇
  2008年   280篇
  2007年   229篇
  2006年   189篇
  2005年   152篇
  2004年   137篇
  2003年   144篇
  2002年   132篇
  2001年   89篇
  2000年   94篇
  1999年   79篇
  1998年   103篇
  1997年   69篇
  1996年   60篇
  1995年   51篇
  1994年   30篇
  1993年   39篇
  1992年   19篇
  1991年   24篇
  1990年   16篇
  1989年   25篇
  1988年   16篇
  1987年   17篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   12篇
  1982年   6篇
  1980年   14篇
  1979年   7篇
  1978年   5篇
  1977年   13篇
  1976年   11篇
  1974年   5篇
  1973年   3篇
排序方式: 共有5511条查询结果,搜索用时 15 毫秒
71.
The block copolymer of poly(1‐hexadecene) (PHD) and polypropylene (PP) was effectively synthesized by the sequential polymerization of propylene and 1‐hexadecene by using highly isospecific TiCl3/Cp2Ti(CH3)2 (Cp = cyclopentadienyl). The block copolymers had two separate melting temperatures of constituent blocks. The modulus of PHD–PP block copolymer was enhanced as the content of sequentially polymerized PP block was increased. The elongation at break showed positive deviation at the intermediate compositions from the simple additive values of constituent homopolymers. Shape memory effect which utilizes the crystalline PHD block as a reversible phase and the crystalline PP block as a fixed structure was examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1709–1715, 2002; DOI 10.1002/app.10551  相似文献   
72.
A multi-fluid nonrandom lattice fluid model with no temperature dependence of close packed volumes of a mer, segment numbers and energy parameters of pure systems is presented. The multi-fluid nonrandom lattice fluid (MF-NLF) model with the local composition concept was capable of describing properties for complex systems. However, the MF-NLF model has strong temperature dependence of energy parameters and segment numbers of pure systems; thus empirical correlations as functions of temperature were represented for reliable and convenient use in engineering practices. The MF-NLF model without temperature dependence of pure parameters could not predict thermodynamic properties accurately. It was found that the present model with three parameters describes quantitatively the vapor pressure and the saturated density for the pure fluid.  相似文献   
73.
Nitrogen molecules have been encapsulated into the central hollows of vertically aligned carbon nitride (CN) multiwalled nanofibers by dc plasma-enhanced chemical vapor deposition with C2H2, NH3, and N2 gases on a Ni/TiN/Si(1 0 0) substrate at 650 °C. X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectra showed the existence of nitrogen molecules in CN nanofibers. Elemental mapping images with electron energy loss spectroscopy of the CN nanofiber and catalyst metal, and optical emission spectroscopy spectra of the plasma showed the distribution of nitrogen atoms and molecules in the CN nanofiber, catalyst metal, and gaseous precursor, respectively. These studies showed that atomic nitrogen diffused into the catalytic metal particle because of the concentration gradient and then saturated at the bottom of the particle. Saturated nitrogen atom participated in the formation of the CN nanofiber wall but most of nitrogen was trapped in the central hollow of the nanofiber as molecules.  相似文献   
74.
Three different grades of high-pressure low-density polyethylene resin were used to establish relationships between tubular film blowability and the molecular parameters, namely, the molecular weight distribution (MWD) and the degree of long-chain branching (LCB), and also between the processing conditions and the mechanical properties of the tubular blown films produced. For the study, both the shearing and elongational flow properties of the resins were determined. During the tubular film blowing experiment we measured the freeze-line position, the tubular bubble diameter, the takeup speed, the axial tension, the pressure inside the tubular bubble, and the mass flow rate of the resin. The thickness of the tubular blown films was measured from the samples collected. In order to determine the tubular film blowability, we measured the maximum takeup speed at which the tubular blown bubble broke, for various blowup ratios. The measurements described above permitted us to calculate the tensile stresses at the freeze line, in both the machine and transverse directions, and they were found to be correlatable to the processing conditions employed. It has been found that the tubular film blowability is increased as the resin's MWD becomes narrower and the degree of LCB is less. It has been found further that a resin having lower elongational viscosity tends to give a greater draw-down ratio, indicating a better tubular film blowability. Finally, the tensile properties of the tubular blown films were found correlatable to the processing variables, namely, blowup and takeup ratios.  相似文献   
75.
Chemostat and total cell retention cultures with internal filter system ofSaecharomyc.es cerevisiae H1-7 were carried out to produce ethanol from wood hydrolysate. Maximum ethanol productivity obtained in a chemostat with the aeration rate of 1 vvm was 3.79 g/(L·h). This was 20% higher than that in a chemostat without aeration. However, the substrate was not completely consumed at the dilution rate with the maximum productivity. The realistic productivity, which has higher than 99% conversion rate of substrate, was. 2.95 g/(L·h). The maximum productivity in the total cell retention culture was 6.65 g/(L·h) at the dilution rate of 0.19 h1 and the residual glucose concentration was negligible.  相似文献   
76.
The temperature dependence of permeability through highly syndiotactic poly(2-hydroxyethyl methacrylate) [P(HEMA)] membrane is reported for highly polar organic solutes such as ureas, methyl substituted ureas and amides, and for NaCl and Na2SO4. The membranes used were equilibrated in distilled water at each temperature before measurements. From the linear correlationship between the excess heat capacities, ?Cpo(excess) in aqueous solution at infinite dilution and the permeability parameter PM1/3, it is found that the water structure perturbing capability of the polar organic solutes is a controlling factor in the permeation mechanism at relatively low temperature, where P(HEMA) membrane has higher water content and more structured water. In addition, it is found that the poor separation for urea of cellulose acetate membrane in the reverse osmosis practice is due to the higher water structure-breaking capability of urea.  相似文献   
77.
This article describes the fundamental foaming mechanisms that governed the volume expansion behavior of extruded polypropylene (PP) foams. A careful analysis of extended experimental results indicated that the final volume expansion ratio of the extruded PP foams blown with butane was governed by either the loss of the blowing agent or the crystallization of the polymer matrix. A charge coupling device (CCD) camera was installed at the die exit to carefully monitor the shape of the extruded PP foams. The CCD images were analyzed to illustrate both mechanisms, gas loss and crystallization, during foaming at various temperatures, and the maximum expansion ratio was achieved when the governing mechanism was changed from one to the other. In general, the gas loss mode was dominant at high temperatures and the crystallization mode was dominant at low temperatures. When the gas loss mode was dominant, the volume expansion ratio increased with decreasing temperature because of the reduced amount of gas lost. By contrast, when the crystallization mode was dominant, the expansion ratio increased with increasing temperature because of the delayed solidification of the polymer. The processing window variation with the butane concentration, the change in the temperature ranges for the two governing modes, and the sensitivity of melt temperature variations to the volume expansion ratio are discussed in detail on the basis of the obtained experimental results for both branched and linear PP materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2661–2668, 2004  相似文献   
78.
The main purpose of the study was to develop a model using ASPEN and Excel simulation method to establish optimum CO2 separation process utilizing hollow fiber membrane modules to treat exhaust gas from LNG combustion. During the simulation, optimum conditions of each CO2 separation scenario were determined while operating parameters of CO2 separation process were varied. The characteristics of hollow fibers membrane were assigned as 60 GPU of permeability and 25 of selectivity for the simulation. The simulation results illustrated that 4 stage connection of membrane module is required in order to achieve over 99% of CO2 purity and 90% of recovery rate. The resulted optimum design and operation parameters throughout the simulation were also correlated with the experimental data from the actual CO2 separation facility which has a capacity of 1,000 Nm3/day located in the Korea Research Institute of Chemical Technology. Throughout the simulation, the operating parameters of minimum energy consumption were evaluated. Economic analysis of pilot scale of CO2 separation plant was done with the comparison of energy cost of CO2 recovery and equipment cost of the plant based on the simulation model. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   
79.
The vector tracking algorithm uses a single extended Kalman filter (EKF) to predict the time-delays and the Doppler deviations of the GNSS signal, while also estimating the user's position, velocity, and clock state. In this paper, the effects of multipath on the tracking performance of the vector delay / frequency lock loop (VDFLL) is studied for better application in the multipath environment. The error expressions of the measurements are given in theory. The tracking error caused by multipath is reduced by VDFLL, which is proved by the tracking error of VDFLL through a new iterating method. The theoretical analysis is verified by the Monte Carlo simulation.  相似文献   
80.
To overcome the plasticization effect in polyimide membranes, many researchers have proposed crosslinking method. This can reduce an inter-segmental mobility by tightening and rigidifying the polymer chains. However, it is difficult to modify the whole polymer chains throughout the membrane because the reaction can be hindered by the diffusion rate of the crosslinker. In particular, it is hard for bulky crosslinker to penetrate a dense membrane with a small d-spacing. This study investigated the effect of crosslinking a dense Matrimid membrane with p-phenylenediamine (p-PDA) via two different crosslinking methods (i.e., methanol-swelling crosslinking process [M-SCP] and liquid-phase crosslinking process [L-PCP]). Most of the crosslinking reaction in M-SCP occurs on the membrane surface due to difficulty in penetration of the bulky p-PDA into the Matrimid dense membrane. In contrast, the L-PCP allows uniform crosslinking across the membrane. The membranes crosslinked using L-PCP showed excellent chemical resistance. Furthermore, the plasticization phenomenon was not observed in the membranes crosslinked using L-PCP with p-PDA more than 15%. Meanwhile, the membrane crosslinked using M-SCP exhibited poor plasticization and chemical resistance properties. These results showed that the L-PCP method can be more effective for the crosslinking of dense membrane to deliver both high plasticization and chemical resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号