首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2909篇
  免费   208篇
  国内免费   26篇
电工技术   56篇
综合类   32篇
化学工业   731篇
金属工艺   82篇
机械仪表   179篇
建筑科学   93篇
矿业工程   5篇
能源动力   111篇
轻工业   291篇
水利工程   15篇
石油天然气   14篇
无线电   413篇
一般工业技术   552篇
冶金工业   222篇
原子能技术   52篇
自动化技术   295篇
  2024年   3篇
  2023年   37篇
  2022年   89篇
  2021年   115篇
  2020年   73篇
  2019年   79篇
  2018年   96篇
  2017年   110篇
  2016年   102篇
  2015年   98篇
  2014年   125篇
  2013年   167篇
  2012年   180篇
  2011年   222篇
  2010年   180篇
  2009年   163篇
  2008年   163篇
  2007年   102篇
  2006年   102篇
  2005年   80篇
  2004年   81篇
  2003年   73篇
  2002年   76篇
  2001年   71篇
  2000年   51篇
  1999年   57篇
  1998年   100篇
  1997年   69篇
  1996年   52篇
  1995年   38篇
  1994年   36篇
  1993年   17篇
  1992年   31篇
  1991年   20篇
  1990年   9篇
  1989年   15篇
  1988年   10篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   8篇
  1975年   1篇
  1972年   1篇
  1914年   2篇
排序方式: 共有3143条查询结果,搜索用时 31 毫秒
121.
The effects of mechanical milling on the carbothermal reduction of oxidized WC/Co hardmetal scrap with solid carbon were examined. Mixed powders were manufactured by milling the WC/Co hard metal scrap oxide and carbon powder in either a tumbler-ball mill or a planetary-ball mill. The milling type affected the carbothermal reduction of the oxide owing to the differing collision energies (mechanical milling energies) in the mills. The hardmetal scrap oxide powder (WO3, CoWO4) milled at high energy was more greatly reduced and at a lower temperature than that milled at lower mechanical energy. The formation of WC by the carburization reaction with solid carbon reached completion at a lower temperature after higher-energy milling than after lower-energy milling. The WC/Co composite particles synthesized by the combined oxidationmechanical milling-carbothermal reduction process were smaller when the initial powder was milled at higher mechanical energy.  相似文献   
122.
Liquefied natural gas (LNG) is attracting significant interest as a clean energy alternative to other fossil fuels, mainly for its ease of transport and low carbon dioxide emission. As worldwide demand for LNG consumption has increased, liquefied natural gas floating, production, storage, and offloading (LNG-FPSO) operations have been studied for offshore applications. In particular, the LNG-FPSO topside process systems are located in limited areas. Therefore, the process plant layout of the LNG-FPSO topside systems will be optimized to reduce the area cost occupied by the topside equipment, and this process plant layout will be designed as a multifloor concept. We describe an optimal layout for a generic offshore LNG liquefaction process operated by the dual mixed refrigerant (DMR) cycle. To optimize the multifloor layout for the DMR liquefaction cycle process, an optimization was performed by dividing it into first and the second cycles. A mathematical model of the multifloor layout problem based on these two cycles was formulated, and an optimal multifloor layout was determined by mixed integer linear programming. The mathematical model of the first cycle consists of 725 continuous variables, 198 equality constraints, and 1,107 inequality constraints. The mathematical model of the second cycle consists of 1,291 continuous variables, 286 equality constraints, and 2,327 inequality constraints. The minimization of the total layout cost was defined as an objective function. The proposed model was applied to DMR liquefaction cycle process to determine the optimal multifloor layout.  相似文献   
123.
Journal of Applied Electrochemistry - In this study, a sensitive and selective electrochemical sensor based on a zirconia oxide-decorated gold nanoflake nanocomposite-modified glassy carbon...  相似文献   
124.
A numerical study was carried out using a molecular dynamics program to examine the wetting characteristics of nano-sized water droplets on surfaces with various pillar surface fractions under different conditions. Square-shaped pillars had surface fractions that increased from 11.1 % to 69.4 %. The pillars had 4 different heights and 3 different surface energies. When the pillar surface fraction changed, the contact angle of a water droplet also changed due to the attraction between the droplet and the pillar surface or the inner attraction of the water molecules. The pillar height also has different effects on the water droplet depending on the magnitude of surface energy.  相似文献   
125.
Aqueous acrylic–polyurethane hybrid emulsions (PUA) were fabricated by semibatch emulsion copolymerization using a mixture of acrylic (AC) monomers in the presence of an isocyanate terminated polyurethane (PU). The effects of PU content on the morphology of the hybrid emulsions and film properties were here investigated in detail using FT‐IR, UV, TEM, and SEM. TEM images clearly showed that hybrid emulsions exhibited a core‐shell structure before neutralization. However, after neutralization with N,N‐dimethylethanolamine, the typical particles exhibited phase inversion, producing particles with irregular hemispheres shapes and diameters about 0.5 μm. SEM images showed that the film surface became rougher as PU content increased, peaking at 10 wt %, the gloss of this film was 23.1 (60°). The UV transmittance spectra of the PUA hybrid emulsion within a wavelength range 700–200 nm decreased as PU content increased. This was consistent with the changes in the surface roughness of the film. Electrophoresis took place on an aluminum alloy surface and the product was dried at 120°C. The film exhibited excellent mechanical performance due to curing reaction between the N?C?O group on PU and hydroxyl group on the AC copolymer. The gloss of the film was found to be as low as 4.0 after electrophoresis testing. These films may be useful in practical extinction electrophoresis. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40078.  相似文献   
126.
Excess amounts of redox stress and failure to regulate homeostatic levels of reactive species are associated with several skin pathophysiologic conditions. Nonmalignant cells are assumed to cope better with higher reactive oxygen and nitrogen species (RONS) levels. However, the effect of periodic stress on this balance has not been investigated in fibroblasts in the field of plasma medicine. In this study, we aimed to investigate intrinsic changes with respect to cellular proliferation, cell cycle, and ability to neutralize the redox stress inside fibroblast cells following periodic redox stress in vitro. Soft jet plasma with air as feeding gas was used to generate plasma-activated medium (PAM) for inducing redox stress conditions. We assessed cellular viability, energetics, and cell cycle machinery under oxidative stress conditions at weeks 3, 6, 9, and 12. Fibroblasts retained their usual physiological properties until 6 weeks. Fibroblasts failed to overcome the redox stress induced by periodic PAM exposure after 6 weeks, indicating its threshold potential. Periodic stress above the threshold level led to alterations in fibroblast cellular processes. These include consistent increases in apoptosis, while RONS accumulation and cell cycle arrest were observed at the final stages. Currently, the use of NTP in clinical settings is limited due to a lack of knowledge about fibroblasts’ behavior in wound healing, scar formation, and other fibrotic disorders. Understanding fibroblasts’ physiology could help to utilize nonthermal plasma in redox-related skin diseases. Furthermore, these results provide new information about the threshold capacity of fibroblasts and an insight into the adaptation mechanism against periodic oxidative stress conditions in fibroblasts.  相似文献   
127.
Kim  Jaehui  Ha  Junsu  Lee  Jae Hwa  Moon  Hoi Ri 《Nano Research》2021,14(2):411-416

In the development of metal-organic frameworks (MOFs), secondary building units (SBUs) have been utilized as molecular modules for the construction of nanoporous materials with robust structures. Under solvothermal synthetic conditions, dynamic changes in the metal coordination environments and ligand coordination modes of SBUs determine the resultant product structures. Alternatively, MOF phases with new topologies can also be achieved by post-synthetic treatment of as-synthesized MOFs via the introduction of acidic or basic moieties that cause the simultaneous cleavage/reformation of coordination bonds in the solid state. In this sense, we studied the solid-state transformation of two ndc-based Zn-MOFs (ndc = 1,4-naphthalene dicarboxylate) with different SBUs but the same pcu topology to another MOF with sev topology. One of the chosen MOFs with pcu nets is [Zn2(ndc)2(bpy)]n (bpy = 4,4′-bipyridine), (6Cbpy-MOF) consisting of a 6-connected pillared-paddlewheel SBU, and the other is IRMOF-7 composed of 6-connected Zn4O(COO)6 SBUs and ndc. Upon post-structural modification, these pcu MOFs were converted into the same MOF with sev topology constructed from the uncommon 7-connected Zn4O(COO)7 SBU (7C-MOF). The appropriate post-synthetic conditions for the transformation of each SBUs were systematically examined. In addition, the effect of the pillar molecules in the pillared-paddlewheel MOFs on the topology conversion was studied in terms of the linker basicity, which determines the inertness during the solid-state phase transformation. This post-synthetic modification approach is expected to expand the available methods for designing and synthesizing MOFs with controlled topologies.

  相似文献   
128.
氟橡胶与金属黏接的研究进展   总被引:1,自引:0,他引:1  
介绍了氟橡胶与金属的黏接机理,综述了氟橡胶与金属黏接用硅烷偶联剂、有机硅胶黏剂和含增黏组分胶浆的研究进展状况,指出简便实用、效果良好的黏接工艺是今后的发展方向。  相似文献   
129.
基于FPGA的高速链路通信系统实现   总被引:1,自引:0,他引:1  
李宏  李蒙  哈乐  王俊 《电子测量技术》2006,29(5):118-121
介绍了利用FPGA实现了基于LVDS接口的高速链路通信系统。在硬件上实现了高速链路通信系统中数据帧的处理、并串转换、串并转换和LVDS接口的输入输出;在软件上实现了终端链路通信软件。此系统可用于两路50Mbps的终端用户数据收发,在链路合路器中进行加帧处理后发出,链路分路器接收到该加帧数据流后进行解帧操作,最终根据不同的用户输出相应分路的50Mbps的LVDS用户数据。  相似文献   
130.
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and progression to chronic kidney disease (CKD). However, no effective therapeutic intervention has been established for ischemic AKI. Endothelial progenitor cells (EPCs) have major roles in the maintenance of vascular integrity and the repair of endothelial damage; they also serve as therapeutic agents in various kidney diseases. Thus, we examined whether EPCs have a renoprotective effect in an IRI mouse model. Mice were assigned to sham, EPC, IRI-only, and EPC-treated IRI groups. EPCs originating from human peripheral blood were cultured. The EPCs were administered 5 min before reperfusion, and all mice were killed 72 h after IRI. Blood urea nitrogen, serum creatinine, and tissue injury were significantly increased in IRI mice; EPCs significantly improved the manifestations of IRI. Apoptotic cell death and oxidative stress were significantly reduced in EPC-treated IRI mice. Administration of EPCs decreased the expression levels of NLRP3, cleaved caspase-1, p-NF-κB, and p-p38. Furthermore, the expression levels of F4/80, ICAM-1, RORγt, and IL-17RA were significantly reduced in EPC-treated IRI mice. Finally, the levels of EMT-associated factors (TGF-β, α-SMA, Snail, and Twist) were significantly reduced in EPC-treated IRI mice. This study shows that inflammasome-mediated inflammation accompanied by immune modulation and fibrosis is a potential target of EPCs as a treatment for IRI-induced AKI and the prevention of progression to CKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号