首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38751篇
  免费   14862篇
  国内免费   6篇
电工技术   742篇
化学工业   17570篇
金属工艺   342篇
机械仪表   753篇
建筑科学   1750篇
矿业工程   2篇
能源动力   895篇
轻工业   7264篇
水利工程   290篇
石油天然气   61篇
无线电   6923篇
一般工业技术   11594篇
冶金工业   742篇
原子能技术   23篇
自动化技术   4668篇
  2023年   19篇
  2022年   95篇
  2021年   309篇
  2020年   1472篇
  2019年   3214篇
  2018年   3153篇
  2017年   3482篇
  2016年   3945篇
  2015年   3999篇
  2014年   3937篇
  2013年   5080篇
  2012年   2757篇
  2011年   2449篇
  2010年   2694篇
  2009年   2574篇
  2008年   2132篇
  2007年   1960篇
  2006年   1702篇
  2005年   1408篇
  2004年   1392篇
  2003年   1358篇
  2002年   1298篇
  2001年   1119篇
  2000年   1095篇
  1999年   473篇
  1998年   98篇
  1997年   72篇
  1996年   51篇
  1995年   30篇
  1994年   29篇
  1993年   26篇
  1992年   20篇
  1991年   21篇
  1990年   20篇
  1989年   13篇
  1988年   3篇
  1987年   10篇
  1986年   11篇
  1985年   11篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   10篇
  1967年   3篇
  1965年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Textile Reinforced Mortar (TRM), also known as Fabric Reinforced Mortar or Fabric Reinforced Cementitious Matrix, composites are an emerging technology for the external repair and strengthening of existing structures. For most applications, the effectiveness of the TRM reinforcement relies on its bond performance. This recommendation identifies the best practice to characterize the bond behaviour of TRM. A shear bond test method is proposed to determine the peak axial stress (associated with the maximum load that can be transferred from the structural member to the externally bonded TRM reinforcement), the stress–slip relationship and the failure mode that controls the TRM-to-substrate load transfer capacity. Guidelines on specimen manufacturing, experimental setup, test execution, and determination of test results are provided.  相似文献   
992.
993.
Diamond‐dispersed copper matrix (Cu/D) composite materials with different interfacial configurations are fabricated through powder metallurgy and their thermal performances are evaluated. An innovative solution to chemically bond copper (Cu) to diamond (D) has been investigated and compared to the traditional Cu/D bonding process involving carbide‐forming additives such as boron (B) or chromium (Cr). The proposed solution consists of coating diamond reinforcements with Cu particles through a gas–solid nucleation and growth process. The Cu particle‐coating acts as a chemical bonding agent at the Cu–D interface during hot pressing, leading to cohesive and thermally conductive Cu/D composites with no carbide‐forming additives. Investigation of the microstructure of the Cu/D materials through scanning electron microscopy, transmission electron microscopy, and atomic force microscopy analyses is coupled with thermal performance evaluations through thermal diffusivity, dilatometry, and thermal cycling. Cu/D composites fabricated with 40 vol% of Cu‐coated diamonds exhibit a thermal conductivity of 475 W m?1 K?1 and a thermal expansion coefficient of 12 × 10?6 °C?1. These promising thermal performances are superior to that of B‐carbide‐bonded Cu/D composites and similar to that of Cr‐carbide‐bonded Cu/D composites fabricated in this study. Moreover, the Cu/D composites fabricated with Cu‐coated diamonds exhibit higher thermal cycling resistance than carbide‐bonded materials, which are affected by the brittleness of the carbide interphase upon repeated heating and cooling cycles. The as‐developed materials can be applicable as heat spreaders for thermal management of power electronic packages. The copper‐carbon chemical bonding solution proposed in this article may also be found interesting to other areas of electronic packaging, such as brazing solders, direct bonded copper substrates, and polymer coatings.
  相似文献   
994.
Hybrid composites of layered brittle‐ductile constituents assembled in a brick‐and‐mortar architecture are promising for applications requiring high strength and toughness. Mostly, polymer mortars have been considered as the ductile layer in brick‐and‐mortar composites. However, low stiffness of polymers does not efficiently transfer the shear between hard ceramic bricks. Theoretical models point to metals as a more efficient mortar layer. However, infiltration of metals into ceramic scaffold is non‐trivial, given the low wetting between metals and ceramics. The authors report on an alternative approach to fabricate brick‐and‐mortar ceramic‐metal composites by using electroless plating of nickel (Ni) on alumina micro‐platelets, in which Ni‐coated micro‐platelets are subsequently aligned by a magnetic field, taking advantage of ferromagnetic properties of Ni. The assembled Ni‐coated ceramic scaffold is then sintered using spark plasma sintering (SPS) to locally create Ni mortar layers between ceramic platelets, as well as to sinter the ceramic micro‐platelets. The authors report on materials and mechanical properties of the fabricated composite. The results show that this approach is promising toward development of bioinspired ceramic‐metal composites.
  相似文献   
995.
Electron beam melting (EBM), as one of metal additive manufacturing technologies, is considered to be an innovative industrial production technology. Based on the layer‐wise manufacturing technique, as‐produced parts can be fabricated on a powder bed using the 3D computational design method. Because the melting process takes place in a vacuum environment, EBM technology can produce parts with higher densities compared to selective laser melting (SLM), particularly when titanium alloy is used. The ability to produce higher quality parts using EBM technology is making EBM more competitive. After briefly introducing the EBM process and the processing factors involved, this paper reviews recent progress in the processing, microstructure, and properties of titanium alloys and their composites manufactured by EBM. The paper describes significant positive progress in EBM of all types of titanium in terms of solid bulk and porous structures including Ti–6Al–4V and Ti–24Nb–4Zr–8Sn, with a focus on manufacturing using EBM and the resultant unique microstructure and service properties (mechanical properties, fatigue behaviors, and corrosion resistance properties) of EBM‐produced titanium alloys.
  相似文献   
996.
Aluminum matrix composites (AMCs) reinforced with the nano‐sized particles are very important materials for the applications in industrial fields. These aluminum matrix composites consist of an aluminum matrix and nano‐sized particles, which own very different physical and mechanical properties from those of the matrix. Nano‐sized particles show a more obvious strengthening effect on the matrix than the micro‐sized particles do, because of the high specific surface area which is positive for the pinning effect during the deformation process. Thus, the nano‐sized particle‐reinforced AMCs usually exhibit a good ductility. The main issues of the fabrication methods are the low wettability between the nano‐sized particles and the molten aluminum alloys, which is fatal to the conventional casting methods, and the agglomeration of nano‐sized particles which happened easier than the larger particles. Several alternative processes have been presented in literature for the production of the nano‐sized particle‐reinforced aluminum composites. This paper is aimed at reviewing the feasible manufacturing techniques used for the fabrication of nano‐sized particle‐reinforced aluminum composites. More importantly, the strengthening mechanisms and models which are responsible for the improvement of mechanical properties of the nano‐sized particle‐reinforced aluminum composites have been reviewed.
  相似文献   
997.
The effect of the initial annealing temperature on the evolution of microstructure and microhardness in high purity OFHC Cu is investigated after processing by HPT. Disks of Cu are annealed for 1 h at two different annealing temperatures, 400 and 800 °C, and then processed by HPT at room temperature under a pressure of 6.0 GPa for 1/4, 1/2, 1, 5, and 10 turns. Samples are stored for 6 months after HPT processing to examine the self‐annealing effects. Electron backscattered diffraction (EBSD) measurements are recorded for each disk at three positions: center, mid‐radius, and near edge. Microhardness measurements are also recorded along the diameters of each disk. Both alloys show rapid hardening and then strain softening in the very early stages of straining due to self‐annealing with a clear delay in the onset of softening in the alloy initially annealed at 800 °C. This delay is due to the relatively larger initial grain size compared to the alloy initially annealed at 400 °C. The final microstructures consist of homogeneous fine grains having average sizes of ≈0.28 and ≈0.34 µm for the alloys initially annealed at 400 and 800 °C, respectively. A new model is proposed to describe the behavior of the hardness evolution by HPT in high purity OFHC Cu.  相似文献   
998.
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass‐fiber‐reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum‐assisted resin infusion (VARI) processing and are subjected to static tensile and three‐point‐bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF2/SMA/GF1/SMA/GF2] and four SMA wires in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] exhibit optimal performance. The flexural strength of the optimal four‐SMA‐wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode‐I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
  相似文献   
999.
The potential of poly(acrylonitrile) electrospun membranes with tuneable pore size and fiber distributions were investigated for airborne fine‐particle filtration for the first time. The impact of solution concentration on final membrane properties are evaluated for the purpose of designing separation materials with higher separation efficiency. The properties of fibers and membranes are investigated systematically: the average pore distribution, as characterized by capillary flow porometry, and thermo‐mechanical properties of the mats are found to be dependent on fiber diameter and on specific electrospinning conditions. Filtration efficiency and pressure drop are calculated from measurement of penetration through the membranes using potassium chloride (KCl) aerosol particles ranging from 300 nm to 12 μm diameter. The PAN membranes exhibited separation efficiencies in the range of 73.8–99.78% and a typical quality factor 0.0224 (1 Pa?1) for 12 wt% PAN with nanofibers having a diameter of 858 nm. Concerning air flow rate, the quality factor and filtration efficiency of the electrospun membranes at higher face velocity are much more stable than for commercial membranes. The results suggest that the structure of electrospun membranes is the best for air filtration in terms of filtration stability at high air flow rate.
  相似文献   
1000.
5A molecular sieves have been widely used as adsorbents in cryogenic distillation for hydrogen isotope separation in fusion reactor engineering, but its low thermal conductivity is detrimental to the process stability. Improving the thermal conductivity of 5A molecular sieves is one of the most important goals for high‐performance devices. Here, firm segregated structures with boron nitride sheets (BNs) are constructed around 5A molecular sieve particles. SEM results show 30 µm BNs tend to form the better networks in comparison with that of 0.12 µm BNs at 40 wt% loadings. It is further verified that BNs with the larger size promote the thermal conductivity. Meanwhile, the thermal conductivity increases with the increasing amounts of BNs. XRD and specific surface area results indicate that the sintering and the addition of BNs exert negligible effects on the structure of 5A molecular sieve. These results indirectly show 5A molecular sieve with BNs segregated structures is very likely to be used for the application of hydrogen isotopic separation. Besides, this work provides new insight into the construction of segregated structure in inorganic porous materials.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号