Goal-conditioned reinforcement learning (RL) is an interesting extension of the traditional RL framework, where the dynamic environment and reward sparsity can cause conventional learning algorithms to fail. Reward shaping is a practical approach to improving sample efficiency by embedding human domain knowledge into the learning process. Existing reward shaping methods for goal-conditioned RL are typically built on distance metrics with a linear and isotropic distribution, which may fail to provide sufficient information about the ever-changing environment with high complexity. This paper proposes a novel magnetic field-based reward shaping (MFRS) method for goal-conditioned RL tasks with dynamic target and obstacles. Inspired by the physical properties of magnets, we consider the target and obstacles as permanent magnets and establish the reward function according to the intensity values of the magnetic field generated by these magnets. The nonlinear and anisotropic distribution of the magnetic field intensity can provide more accessible and conducive information about the optimization landscape, thus introducing a more sophisticated magnetic reward compared to the distance-based setting. Further, we transform our magnetic reward to the form of potential-based reward shaping by learning a secondary potential function concurrently to ensure the optimal policy invariance of our method. Experiments results in both simulated and real-world robotic manipulation tasks demonstrate that MFRS outperforms relevant existing methods and effectively improves the sample efficiency of RL algorithms in goal-conditioned tasks with various dynamics of the target and obstacles.
Journal of Superconductivity and Novel Magnetism - Double perovskite La2?xSrxMnRuO6 (x?=?0, 0.3, 0.5, 0.8, 1.0) samples were synthesized by the standard solid-state reaction... 相似文献
Disturbance of spatiotemporal oxygen balance is the main cause of delayed healing or nonhealing of large bone defects. The accurate administration of oxygen to regulate disruptions in the spatiotemporal oxygen equilibrium during 9 h of hypoxia is imperative for bone tissue regeneration. Herein, oxygen-loaded nanobubbles prepared by double emulsification are successfully embedded in GelMA/HepMA microsphere macromolecular meshwork by microfluidic techniques, and a spatiotemporalized hydrogel microsphere is constructed by noncovalently binding bone morphogenetic protein 2 (BMP-2). The spatiotemporalized hydrogel microspheres precisely “remote control” oxygen release by ultrasound in vitro 9 h after bone injury to regulate spatiotemporal oxygen homeostasis disorder, maintain a high level of vascular endothelial growth factor (VEGF) expression, and accelerate bone repair. The spatiotemporalized hydrogel microspheres possess good oxygen-carrying capacity and ultrasonic responsiveness, and the oxygen concentration increases to 1.63, 1.95, 2.11, and 2.29 times under the ultrasound action at different intensities of 1, 2, 3, and 4 W, respectively, providing the conditions for the precise regulation of spatiotemporal oxygen balance disorder by ultrasound. In the in vitro hypoxia model and in vivo rat femoral defect model, the spatiotemporal hydrogel microspheres show good vascularization and osteogenesis capabilities, which provide a new strategy for the clinical treatment of large bone defects. 相似文献
Localized and sustained osteogenic-angiogenic stimulation to bone defects is critical for effective bone repair.Here,desferrioxamine(DFO)was loaded on silk fibroin nanofibers and blended with hydroxyapatite nanorods(HA),forming injectable DFO-loaded silk fibroin-HA nanocomposite hydrogels.The composite hydrogels remained homogeneous distribution of HA with high ratio(60%)and also higher stiffness than that of pure silk fibroin nanofiber hydrogels,which provided stable osteogenic stimulation niches for tissue regeneration.Without the scarify of injectability,the hydrogels achieved slow delivery of DFO for above 60 days,resulting in suitable angiogenesis in vitro and in vivo and better osteogenesis than DFO-free systems.Compared to previous injectable silk fibroin-HA hydrogels,the introduction of vascularization capacity further stimulated the osteogenic differentiation of stem cells and accelerated new bone formation.Quicker and better bone healing were detected at defect sites after the injection of DFO-loaded nanocomposite hydrogels,indicating the effective synergistic effect of osteogenic and angiogenic cues.This work provides a simple and effective strategy of introducing angiogenic cues to bone matrices.We believe that the injectable nanocomposite hydrogels are suitable for the regeneration of bone tissues. 相似文献