首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   37篇
  国内免费   2篇
电工技术   15篇
综合类   1篇
化学工业   201篇
金属工艺   8篇
机械仪表   7篇
建筑科学   22篇
矿业工程   3篇
能源动力   27篇
轻工业   107篇
水利工程   4篇
石油天然气   1篇
无线电   50篇
一般工业技术   115篇
冶金工业   9篇
原子能技术   6篇
自动化技术   202篇
  2024年   1篇
  2023年   15篇
  2022年   43篇
  2021年   48篇
  2020年   28篇
  2019年   24篇
  2018年   33篇
  2017年   21篇
  2016年   34篇
  2015年   25篇
  2014年   33篇
  2013年   54篇
  2012年   68篇
  2011年   69篇
  2010年   46篇
  2009年   54篇
  2008年   39篇
  2007年   34篇
  2006年   16篇
  2005年   21篇
  2004年   12篇
  2003年   9篇
  2002年   14篇
  2001年   3篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有778条查询结果,搜索用时 0 毫秒
51.
There are presented results regarding a new set of molecularly imprinted polymers (MIPs) based on acrylonitrile:acrylic acid (AN:AA) copolymer matrix. As template, it was used sclareol, an important anticancer bioactive compound, never used before for molecular imprinting. An emerging and insufficient studied MIP preparation method, namely the phase inversion, was used to prepare 0.8 mm spherical sclareol MIPs (S‐MIPs). Three AN:AA copolymers, having the initial monomer ratios 90:10, 80:20, and 70:30, were synthesized by radical copolymerization in emulsion, without emulsifier. After that, each copolymer was dissolved in the presence of the template (sclareol) in dimethylformamide. The imprinting and the morphology of these new materials were analyzed by rheology, elemental analysis, infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, batch rebinding tests, and Scatchard analysis. The conclusion was that the AN:AA‐80:20 matrix proved to be the optimized solution between high rigidity (given by the AN segments) and high affinity for the template (given by AA segments), the average imprinting factor for this system being 2.67. POLYM. ENG. SCI., 54:1484–1494, 2014. © 2013 Society of Plastics Engineers  相似文献   
52.
53.
The physico-chemical properties of three grafted pullulans (P) having linked poly(3-acrylamidopropyl)trimethylammonium chloride (pAPTAC) as side chains (P-g-pAPTAC1, P-g-pAPTAC2 and P-g-pAPTAC3 with 22.53, 29.05, and 34.51 (wt.%) of pAPTAC content in polymer, respectively) and possessing polyelectrolyte character were determined by light scattering analysis. All grafted pullulan aqueous solutions were tested in the presence of 0.5 M NaCl, KCl, NaNO3 or KNO3. The biggest associations were recorded in 0.5 M NaCl aqueous solutions for P-g-pAPTAC1, P-g-pAPTAC2 and P-g-pAPTAC3 according to the maximum values for Rg extracted from MALLS (multiangle laser light scattering) measurements. Also, the dominant conformation in salted solution of these polyelectrolytes was random coil as Debye plot analysis revealed. Antibacterial activity was tested by Kirby–Bauer diffusion method and all grafted pullulans dissolved in aqueous solutions of 0.5 M NaCl have developed inhibition zone against Staphylococcus aureus (ATCC 25923).  相似文献   
54.
An integrated computational approach to microstructural evolution and electrical transport in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method are used to describe the microstructural development during the sintering of a prototype two-dimensional film. Then, the conductivity of the sintering samples is calculated concurrently as the microstructure evolves, using both resistor lattice models and effective medium theory for electrical transport in porous aggregates of lightly sintered particles. This approach, when combined with the modeling of resistivity at the grain–grain contacts as a function of neck geometry, ambient gas concentration and temperature, could facilitate the development and optimization of novel microstructures for advanced ceramic gas sensors.  相似文献   
55.
A semi-empirical nonlinear model of moisture content and wet-milling quality degradation in com drying is established. The model uncertainty is expressed as a relative error level which includes a pre-specified percentage of experimental data. An optimal control strategy for batch drying is determined which maximizes the dryer throughput, while simultaneously satisfying two quality constraints on the final state: achieving specified moisture content and wet-milling quality levels. Taking into account the model uncertainty results in a conservative but less efficient control strategy. The performance - robustness compromise is discussed.  相似文献   
56.
In freeze drying, the desorption step for reaching a low target moisture content may take a significant fraction of the total process duration. Because the long-term stability of freeze-dried biological products strongly depends on the current moisture content, modeling the desorption process may help safely optimize the secondary drying step. Most published models assume a first-order desorption kinetic, but experimental evidence shows that strongly bound water in the monolayer takes a much longer time to be desorbed than less bound water in multilayer. The proposed model for desorption of freeze-dried lactic acid bacteria preparation accounts for monolayer and multilayer water state in the solid matrix, with very different desorption kinetics. Results showed that the ratio of characteristic desorption times (monolayer/multilayer) was almost 30. Temperature dependence was adequately described by an Arrhenius law in the range of 15 to 40°C. Model parameter identification used simultaneously gravimetric measurements with high time resolution and direct Karl-Fisher titration, from several experiments at different, time-varying temperatures.  相似文献   
57.
Nanoparticles have applications in various industrial fields principally in drug delivery. Nowadays, there are several processes for manufacturing colloidal polymeric systems and methods of preparation as well as of characterization. In this work, Dynamic Light Scattering and Atomic Force Microscopy techniques were used to characterize polyurethane nanoparticles. The nanoparticles were prepared by miniemulsion technique. The lipophilic monomers, isophorone diisocyanate (IPDI) and natural triol, were emulsified in water containing surfactant. In some formulations the poly(ethylene glycol) was used as co-monomer to obtain the hydrophilic and pegylated nanoparticles. Polyurethane nanoparticles observed by atomic force microscopy (AFM) were spherical with diameter around 209 nm for nanoparticles prepared without PEG. From AFM imaging two populations of nanoparticles were observed in the formulation prepared with PEG (218 and 127 nm) while dynamic light scattering (DLS) measurements showed a monodisperse size distribution around 250 nm of diameters for both formulations. The polydispersity index of the formulations and the experimental procedures could influence the particle size determination with these techniques.  相似文献   
58.
Reactions of 2,3,5,6-tetra(2-pyridyl) pyrazine (tppz) with [ML6][X]2 (L = CH3CN, H2O;X = [BF4], [ClO4], [NO3] [BArF](BArF - B[3,5-C6H3(CF3)2]4) lead to the high-yield formation of mononuclear [M(tppz)2]2+, (M = MnII, FeII, CoII, and NiII) and dinuclear [Ni2(tppz)(CH3CN)6]4+ species. The new compounds were fully characterized by X-ray crystallographic, spectroscopic, and magnetic susceptibility measurements. Surprisingly, the 2:1 M:tppz reactions did not lead to isolation of the dinuclear species except in the case of Ni(II). It was further noted that even in the case of the Ni reactions, the nuclearity of the product depends on the choice of anions and the reaction conditions. Magnetic measurements of the mononuclear species [Co(tppz)2]2+ revealed thermally induced spin-crossover behavior from a high-spin S = 3/2 at higher temperatures to a low-spin S = 1/2 complex at lower temperatures. The dinuclear compound [Ni2(tppz)(CH3CN)6]4+ exhibits a weak anti-ferromagnetic interaction through the bridging tppz ligand.  相似文献   
59.
This paper presents an optimizing control scheme for simulated moving beds (SMB) that enables to incorporate multi-rate (MR) sampled measurements into the control and estimation problem in a clear and transparent manner. This is particularly relevant for chiral separations where online monitoring requires the combination of various analytical techniques that may operate on widely varying time scales. An MR periodic linear time-varying (PLTV) model is derived for the SMB process. The cyclic nature of the process is exploited by formulating the MR-PLTV model within a repetitive model predictive control framework. Simulation results for the chiral separation of the guaifenesin enantiomers are presented. The proposed multi-rate controller is able to deliver increased productivity while respecting the process and product specifications.  相似文献   
60.
Fabrication of uranium oxicarbide microspheres, a component of TRISO fuel particles for high temperature nuclear power systems, is based on the internal gelation of uranium salts in the presence of carbon black. In order to obtain a high quality product, carbon black should remain dispersed during all phases of the gelation process. In this study, the surface and structural properties of several commercial carbon black materials, and the use of dispersing agents was examined with the goal of finding optimal conditions for stabilizing submicron-sized carbon black dispersions. Traditional methods for stabilizing dispersions, based on the use of dispersing agents, failed to stabilize carbon dispersions against large pH variations, typical for the internal gelation process. An alternate dispersing method was proposed, based on using surface-modified carbons functionalized with strongly ionized surface groups (sodium sulfonate). With a proper choice of surface modifiers, these advanced carbons disperse easily to particles in the range of 0.15-0.20 μm and the dispersions remain stable during the conditions of internal gelation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号