首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43640篇
  免费   13181篇
  国内免费   11篇
电工技术   792篇
综合类   4篇
化学工业   18407篇
金属工艺   407篇
机械仪表   801篇
建筑科学   1811篇
矿业工程   4篇
能源动力   962篇
轻工业   8140篇
水利工程   308篇
石油天然气   69篇
无线电   7077篇
一般工业技术   11999篇
冶金工业   1088篇
原子能技术   37篇
自动化技术   4926篇
  2024年   20篇
  2023年   74篇
  2022年   269篇
  2021年   504篇
  2020年   1570篇
  2019年   3285篇
  2018年   3238篇
  2017年   3574篇
  2016年   4010篇
  2015年   4034篇
  2014年   4066篇
  2013年   5302篇
  2012年   2953篇
  2011年   2637篇
  2010年   2821篇
  2009年   2749篇
  2008年   2284篇
  2007年   2096篇
  2006年   1797篇
  2005年   1506篇
  2004年   1459篇
  2003年   1399篇
  2002年   1337篇
  2001年   1154篇
  2000年   1131篇
  1999年   520篇
  1998年   201篇
  1997年   175篇
  1996年   110篇
  1995年   68篇
  1994年   64篇
  1993年   53篇
  1992年   36篇
  1991年   37篇
  1990年   33篇
  1989年   20篇
  1988年   21篇
  1987年   23篇
  1986年   25篇
  1985年   23篇
  1984年   19篇
  1983年   17篇
  1982年   19篇
  1981年   24篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1977年   12篇
  1976年   20篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
11.
The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.  相似文献   
12.
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.

The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.

The site testing provided good practical experience and showed up problems which would not otherwise have been detected.  相似文献   

13.
Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
14.
Tracking targets of interest is one of the major research areas in radar surveillance systems. We formulate the problem as incomplete data estimation and apply EM to the MAP estimate. The resulting filter has a recursive structure analogous to the Kalman filter. The advantage is that the measurement‐update deals with multiple measurements in parallel and the parameter‐update estimates the system parameters on the fly. Experiments tracking separate targets in parallel show that tracking maintenance ratio of the proposed system is better than that of NNF and RMS position error is smaller than that of PDAF. Also, the system parameters are correctly obtained even from incorrect initial values. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
15.
The cooling and solidification of melted drops during their movement in an immiscible cooling medium is widely employed for granulation in the chemical industry, and a study of these processes to provides a basis for the design of the granulation tower height and the temperature of the cooling medium is reported. A physical model of the cooling and solidification of the drop is established and the numerical calculation is performed. The influences of the key factors in the solidification, i.e., Bi number, drop diameter, temperature of the cooling medium, etc. are presented. The cooling and solidification during wax granulation in a water‐cooling tower and during urea granulation in an air‐cooling tower (spraying tower) are described in detail. Characteristics of the solidification and temperature distribution within the particle at different times are shown. The model and calculations can be used for structure design of the granulation tower and optimization of the operation parameters.  相似文献   
16.
Nanocomposites based on poly(butylene terephthalate) (PBT) and an organoclay (Cloisite 30B) were prepared by melt blending using a twin‐screw extruder. Two kinds of PBTs, ie PBT‐A and PBT‐B, with different inherent viscosities (ηinh), were used for this study (ηinh of PBT‐A and PBT‐B were 0.74 and 1.48, respectively). Dispersion of the clay layers in the PBT nanocomposites was characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile and dynamic mechanical properties and non‐isothermal crystallization temperatures of the nanocomposites were also examined. Nanocomposites based on the higher‐viscosity PBT (PBT‐B) showed a higher degree of exfoliation of the clay and a higher reinforcing effect when compared to the composites based on the lower‐viscosity PBT (PBT‐A). The clay nanolayers dispersed in PBT matrices lead to increases in the non‐isothermal crystallization temperatures of the PBTs, with such increases being more significant for the PBT‐B nanocomposites than for the PBT‐A nanoocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   
17.
From chloromethylated polyimide, a useful starting material for modification of aromatic polyimides, a thermocurable transparent polyimide having acrylate side groups was prepared. In the presence of 1,8‐diazabicyclo[5,4,0]undec‐7‐ene, chloromethylated polyimide was esterified with acrylic acid to synthesize poly(imide methylene acrylate). The polymer was soluble in organic solvent, which makes it possible to prepare a planar film by spin coating. The polymer film became insoluble after thermal treatment at 230 °C for 30 min. Optical transparency of the film at 400 nm (for 1 µm thickness) was higher than 98 % and not affected by further heating at 230 °C for 250 min. Adhesion properties measured by the ASTM D3359‐B method ranged from 4B to 5B. Preliminary results of planarization testing showed a high degree of planarization (DOP) value (>0.53). These properties demonstrate that poly(imide methylene acrylate) could be utilized as a thermocurable transparent material in fabricating display devices such as TFT‐LCD. Copyright © 2004 Society of Chemical Industry  相似文献   
18.
19.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   
20.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号