首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359233篇
  免费   5181篇
  国内免费   1540篇
电工技术   6282篇
综合类   3180篇
化学工业   51515篇
金属工艺   15333篇
机械仪表   12101篇
建筑科学   9015篇
矿业工程   1805篇
能源动力   7986篇
轻工业   28161篇
水利工程   4000篇
石油天然气   4419篇
武器工业   95篇
无线电   45642篇
一般工业技术   68113篇
冶金工业   52164篇
原子能技术   5795篇
自动化技术   50348篇
  2021年   2495篇
  2020年   1784篇
  2019年   2358篇
  2018年   17862篇
  2017年   16844篇
  2016年   13798篇
  2015年   3237篇
  2014年   4758篇
  2013年   12370篇
  2012年   10284篇
  2011年   18833篇
  2010年   15650篇
  2009年   13923篇
  2008年   15928篇
  2007年   16811篇
  2006年   8547篇
  2005年   8802篇
  2004年   8555篇
  2003年   8688篇
  2002年   7996篇
  2001年   7508篇
  2000年   6870篇
  1999年   6773篇
  1998年   15395篇
  1997年   11033篇
  1996年   8688篇
  1995年   6770篇
  1994年   5984篇
  1993年   5891篇
  1992年   4726篇
  1991年   4365篇
  1990年   4168篇
  1989年   3895篇
  1988年   3741篇
  1987年   3262篇
  1986年   3166篇
  1985年   3746篇
  1984年   3463篇
  1983年   3115篇
  1982年   2924篇
  1981年   3044篇
  1980年   2848篇
  1979年   2708篇
  1978年   2546篇
  1977年   3036篇
  1976年   3731篇
  1975年   2364篇
  1974年   2340篇
  1973年   2367篇
  1972年   1882篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
12.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
13.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
14.
Russian Engineering Research - Digital tools for managing improvements in automobile production are developed. An operative tool provides warnings regarding the operational quality of the vehicles...  相似文献   
15.
Currently, the efficient detection of fingerprints is essential for the crime investigations. Revealing fingerprints is commonly achieved with fluorescent organic compounds but they are not efficient for fingerprint detection on porous or reflective surfaces. In order to solve the problem of collecting fingerprints on porous/reflective surfaces, inorganic phosphors have been employed, since they have characteristics of variable color emission, afterglow, high chemical stability and nano-size, which allow the fingerprint detection on any porous or non-porous surfaces. Due to these last properties, this review presents a summary about the use of phosphorescent and fluorescent phosphors for the detection of latent fingerprints. First, we discussed the main physical and chemical characteristics of the fingerprints which permit their detection and collection from any surface. After this, we presented the main morphological, structural and luminescent properties of the phosphorescent and fluorescent phosphors that allow their use for fingerprint detection. Later, we demonstrated with pictures of fingerprints (with and without light emission from the phosphors deposited on them) that both, phosphorescent and fluorescent phosphors can be used to visualize fingerprints with high resolution and high contrast without interference of the background surface, which is ideal for its collection and registration in the Automated Fingerprint Identification System (AFIS). We believe that this review could be useful to understand how to select an appropriate phosphorescent or fluorescent material for fingerprint detection depending on the type of surface (porous or non-porous, reflective or not reflective) where the fingerprint is deposited.  相似文献   
16.
Automation and Remote Control - We consider multicriteria minimax optimization problems with criteria in the form of the maxima of functionals given by the induced norms of linear operators taking...  相似文献   
17.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
18.
Theoretical Foundations of Chemical Engineering - Using gas–liquid chromatography, the activity coefficients upon the infinite dilution of the components of the reaction mixture for obtaining...  相似文献   
19.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
20.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号