首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1431篇
  免费   69篇
  国内免费   6篇
电工技术   72篇
综合类   3篇
化学工业   367篇
金属工艺   43篇
机械仪表   32篇
建筑科学   42篇
能源动力   63篇
轻工业   155篇
水利工程   8篇
石油天然气   3篇
无线电   118篇
一般工业技术   314篇
冶金工业   125篇
原子能技术   33篇
自动化技术   128篇
  2024年   1篇
  2023年   8篇
  2022年   32篇
  2021年   53篇
  2020年   23篇
  2019年   39篇
  2018年   31篇
  2017年   29篇
  2016年   47篇
  2015年   40篇
  2014年   64篇
  2013年   87篇
  2012年   88篇
  2011年   142篇
  2010年   84篇
  2009年   80篇
  2008年   94篇
  2007年   72篇
  2006年   40篇
  2005年   46篇
  2004年   45篇
  2003年   49篇
  2002年   27篇
  2001年   23篇
  2000年   21篇
  1999年   15篇
  1998年   57篇
  1997年   40篇
  1996年   24篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   4篇
  1991年   4篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   4篇
  1976年   4篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有1506条查询结果,搜索用时 78 毫秒
31.
We propose a novel multi-spectral imaging method based on compressive sensing (CS). In CS theory, the enhancement of signal sparsity is important for accurate signal reconstruction. The main novelty of the proposed method is the employment of a self-correlation of an image, that is a local intensity similarity and multi-spectral correlation, to enhance the sparsity of the multi-spectral image to be recovered. Local intensity similarity, which is based on the concept that spatial changes in intensity are likely to be similar within local regions, contributes to sparsity enhancement. Furthermore, we exploit multi-spectral correlation to improve the sparsity of the multi-spectral components to be recovered. In order to simultaneously exploit different types of characteristics (i.e., local intensity similarity and multi-spectral correlation) for representing a signal as sufficiently sparse, we introduce a hierarchical joint sparsity model in the CS image recovery process. Our experiments show that the use of a self-correlation significantly improves the performance of multi-spectral image reconstruction.  相似文献   
32.
The building-cube method (BCM) is a new generation algorithm for CFD simulations. The basic idea of BCM is to simplify the algorithm in all stages of flow computation to achieve large-scale simulations. Calculation of a pressure field using the Successive Over Relaxation (SOR) method consumes most of the total execution time required for BCM. In this paper, effective implementations on modern vector and scalar processors are investigated. NEC SX-9 and Intel Nehalem-EX are the latest vector and scalar processors. Those processors have much higher peak performances than their previous-generation processors. However, their memory bandwidth improvement cannot catch up with the performance improvement of processors. This is the so-called memory wall problem. In our paper, we discuss optimization techniques for implementation of the SOR method based on architectural characteristics of these modern processors, and evaluate their effects on the sustained performances of these processors for BCM.  相似文献   
33.
In 2007, samples of treated effluent were collected at point of discharge to the environment from 39 wastewater treatment plants (WWTPs) located across Victoria, Australia grouped by treatment type. Sample genotoxicity was assessed with a high-throughput luminescent umu test method using Salmonella typhimurium TL210 strain, with and without addition of a commercially available metabolic activation system. Samples were also screened using a gas chromatographic-mass spectrometric mass-structure database recognition method. A genotoxic response was observed in half of the samples tested without metabolic activation system (相似文献   
34.
Completely autotrophic nitrogen removal over nitrite (CANON) is a cost-effective nitrogen removal process. Implementation of the CANON process relies on the cooperation of ammonium-oxidizing and Anammox bacteria, as well as the inhibition of nitrite-oxidizing bacteria. Strict limitations on dissolved oxygen (DO) concentration in the reactor, and the addition of sufficient inorganic carbon in the influent, were adopted as the main operational strategies. The reactor was fed with synthetic inorganic wastewater composed mainly of NH(4)(+)-N, and operated for 106 days. Stable nitrogen removal rates (NRR) of around 1.4 kg N m(-3) d(-1) were obtained at ambient temperature. Morphological characteristics and analysis of bacterial community confirmed the formation of functional outer aerobic and inner anaerobic granular sludge, providing evidence of stable nitrogen removal.  相似文献   
35.
Insects perform adaptive behavior according to changing environmental conditions using comparatively small brains. Because adaptability is generated through the relationship among brain, body and environment, it is necessary to examine how a brain works under these conditions. In this study, to understand neural processing involved in adaptive behavior, we constructed a brain–machine hybrid system using motor signals related to the steering behavior of the male silkworm moth for controlling a two-wheeled mobile robot. We developed this hybrid system according to the following steps. (1) We selected steering signals corresponding to walking direction that were activated during neck swinging induced by optic flow and pheromone stimuli. (2) To control a robot by neural activity, we implemented a spike-behavior conversion rule such that frequency of the left and right neck motor neurons’ spikes was linearly converted into rotation of the wheels. (3) For electrophysiological multi-unit recordings on a robot, we developed small amplifiers. Using this hybrid system, we could observe the programmed behavioral pattern and orientation toward a pheromone source. Moreover, we compared the orientation behavior of moths and that of the hybrid system at different pheromone stimulus frequencies. From these experiments, we concluded that we could reconstruct silkworm moth behavior on the hybrid system.  相似文献   
36.
Maximum stress intensity factors of a surface crack usually appear at the deepest point of the crack, or a certain point along crack front near the free surface depending on the aspect ratio of the crack. However, generally it has been difficult to obtain smooth distributions of stress intensity factors along the crack front accurately due to the effect of corner point singularity. It is known that the stress singularity at a corner point where the front of 3 D cracks intersect free surface is depend on Poisson's ratio and different from the one of ordinary crack. In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3-D semi-elliptical surface crack in a semi-infinite body under mixed mode loading. The body force method is used to formulate the problem as a system of singular integral equations with singularities of the form r −3 using the stress field induced by a force doublet in a semi-infinite body as fundamental solution. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately. Distributions of stress intensity factors are indicated in tables and figures with varying the elliptical shape and Poisson's ratio.  相似文献   
37.
38.
The rainbow schlieren deflectometry has been combined with the computed tomography to obtain three-dimensional density fields of shock containing free jets and we call the method the schlieren CT. Experiments on the schlieren CT have been performed at a nozzle pressure ratio of 4.0 by using an axisymmetric convergent nozzle with an inner diameter of 10 mm at the exit where the nozzle was operated at an underexpanded condition. Multidirectional rainbow schlieren pictures of an underexpanded sonic jet can be acquired by rotating the nozzle about its longitudinal axis in equal angular intervals and the three-dimensional density fields are reconstructed by the schlieren CT. The validity of the schlieren CT is verified by a comparison with the density fields reconstructed by the Abel inversion method. As a result, it is found that excellent quantitative agreement is reached between the three-dimensional jet density fields reconstructed from both methods.  相似文献   
39.
This paper reports on the experimental validation characteristics of a salient pole synchronous motor with the starting field circuit in contact. The starting characteristics were experimentally evaluated at voltages of 100%, 75%, and 50% using a 1.5 kVA salient pole synchronous motor. The signal for pulling into step was applied to the field circuit by using the control module for all test conditions. The results confirmed the proper pulling into step at 100% of voltage, and the results of the tests at 50% and 75% of voltage revealed that the pulling into step under these conditions becomes stable at the suitable slip condition.  相似文献   
40.
A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation parameters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance model has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号