首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3455篇
  免费   194篇
  国内免费   13篇
电工技术   66篇
综合类   3篇
化学工业   683篇
金属工艺   145篇
机械仪表   244篇
建筑科学   51篇
矿业工程   2篇
能源动力   150篇
轻工业   379篇
水利工程   39篇
石油天然气   4篇
无线电   573篇
一般工业技术   738篇
冶金工业   221篇
原子能技术   49篇
自动化技术   315篇
  2024年   5篇
  2023年   44篇
  2022年   60篇
  2021年   106篇
  2020年   52篇
  2019年   75篇
  2018年   90篇
  2017年   77篇
  2016年   106篇
  2015年   87篇
  2014年   129篇
  2013年   200篇
  2012年   242篇
  2011年   294篇
  2010年   209篇
  2009年   203篇
  2008年   216篇
  2007年   169篇
  2006年   164篇
  2005年   119篇
  2004年   125篇
  2003年   100篇
  2002年   123篇
  2001年   100篇
  2000年   68篇
  1999年   64篇
  1998年   127篇
  1997年   70篇
  1996年   50篇
  1995年   28篇
  1994年   31篇
  1993年   24篇
  1992年   25篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有3662条查询结果,搜索用时 9 毫秒
991.
This paper presents the design, development and implementation of an adaptive recurrent neural networks (ARNN) controller suitable for real-time manipulator control applications. The unique feature of the ARNN controller is that it has dynamic self-organizing structure, fast learning speed, good generalization and flexibility in learning. The proposed adaptive algorithm focuses on fast and efficient optimization by weighting parameters of inverse recurrent neural models used in the ARNN controller. This approach is employed to implement the ARNN controller with a view to controlling the joint angle position of the highly nonlinear pneumatic artificial muscle (PAM) manipulator in real-time. The performance of this novel proposed controller was found to be superior compared with a conventional PID controller. These results can be applied to control other highly nonlinear systems as well.  相似文献   
992.
Vertically aligned arrays of ultralong ZnO nanowires were synthesized on SiO2 substrates with carbothermal vapor phase transport method with Au seeding layer. High density of vertically aligned ZnO nanowires with lengths from a few to ∼300 μm could be grown by controlling growth conditions. Supply of high concentration of Zn vapor and control of the ratio between Zn vapor and oxygen are found to have the most significant effects on the growth of long ZnO nanowires in the vapor-solid growth mechanism. The nanowires are of high crystalline quality as confirmed by various structural, compositional, and luminescent measurements. Luminescent and electrical properties of ZnO nanowires with different growth conditions were also investigated.  相似文献   
993.
994.
995.
Solid-state dye-sensitized solar cell with 7.1% efficiency at 100 mW/cm(2) is reported, one of the highest observed for N719 dye. Excellent performance was achieved via a graft copolymer-templated, organized mesoporous TiO(2) film with a large surface area using spindle-shaped, preformed TiO(2) nanoparticles and solid polymer electrolyte.  相似文献   
996.
A nanoforest structure for surface-enhanced Raman scattering (SERS) active substrates is fabricated and analyzed. The detailed morphology of the resulting structure can be easily controlled by modifying the process parameters such as initial gold layer thickness and etching time. The applicability of the nanoforest substrate as a label-free SERS immunosensor is demonstrated using influenza A virus subtype H1N1. Selective binding of the H1N1 surface antigen and the anti-H1 antibody is directly detected by the SERS signal differences. Simple fabrication and high throughput with strong in-plane hot-spots imply that the nanoforest structure can be a practical sensing component of a chip-based SERS sensing system.  相似文献   
997.
We demonstrate that surface stresses in epitaxially grown VO? nanowires (NWs) have a strong effect on the appearance and stability of intermediate insulating M? phases, as well as the spatial distribution of insulating and metallic domains during structural phase transitions. During the transition from an insulating M1 phase to a metallic R phase, the coexistence of insulating M? and M? phases with the absence of a metallic R phase was observed at atmospheric pressure. In addition, we show that, for a VO? NW without the presence of an epitaxial interface, surface stresses dominantly lead to spatially inhomogeneous phase transitions between insulating and metallic phases. In contrast, for a VO? NW with the presence of an epitaxial interface, the strong epitaxial interface interaction leads to additional stresses resulting in uniformly alternating insulating and metallic domains along the NW length.  相似文献   
998.
Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.  相似文献   
999.
Electrohydrodynamic (EHD) jet printing is a technique using electric fields to eject inks through nozzle apertures. EHD jet printing is very attractive due to its non-contacting nature and compatibility with diverse materials and substrates. In this research, we have fabricated micron-sized dot arrays and line patterns with carbon black ink on Si wafer substrates using EHD jet printing. The effect of operating conditions such as applied voltage, working distance and stage speed on the size and shape of the jetted patterns and jetting cycles is investigated by using optical microscope, high speed camera and atomic force microscopy (AFM). We have also demonstrated the drop-on-demand feature of the EHD jet printing system by patterning carbon black ink lines with various widths and dot arrays with desired diameters and spacing by controlling the operating conditions.  相似文献   
1000.
An elemental sulfur and multi-walled carbon nanotube (S-MWNT) composite was synthesized by dissolving sulfur in ammonium sulfides and then precipitating on MWNT. Morphology observation by scanning electron microscopy (SEM) confirmed that S-MWNT product was successfully prepared by incorporating sulfur into MWNT network. Without additional conducting material, the S-MWNT composite cathodes were prepared for electrochemical tests. The properties measured in discharge-charge cycling test showed that the composite had the initial discharge capacity of 1024 mAh g(-1), which is about 61% sulfur utilization. However, in the subsequent cycling, the capacities faded. To determine the reason of rapid capacity drop, S-MWNT composite cathodes were compared in the cycling tests with varying three kinds of electrolytes and the cathode was subjected to physical force by rolling. The changes in the cycle performances proved that the deterioration of S-MWNT composite cathodes was not related to the electrolytes but to physical bonding that may not maintain the conducting path between sulfur and MWNT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号