首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170049篇
  免费   17988篇
  国内免费   10664篇
电工技术   14298篇
技术理论   4篇
综合类   14285篇
化学工业   23649篇
金属工艺   10447篇
机械仪表   11530篇
建筑科学   14339篇
矿业工程   5671篇
能源动力   5135篇
轻工业   13029篇
水利工程   4250篇
石油天然气   8677篇
武器工业   2011篇
无线电   20707篇
一般工业技术   17012篇
冶金工业   6753篇
原子能技术   1957篇
自动化技术   24947篇
  2024年   854篇
  2023年   2768篇
  2022年   5582篇
  2021年   7645篇
  2020年   5757篇
  2019年   4444篇
  2018年   4970篇
  2017年   5919篇
  2016年   5109篇
  2015年   7662篇
  2014年   9658篇
  2013年   11419篇
  2012年   13345篇
  2011年   13864篇
  2010年   12859篇
  2009年   12104篇
  2008年   11943篇
  2007年   11277篇
  2006年   10243篇
  2005年   7989篇
  2004年   5621篇
  2003年   4743篇
  2002年   4555篇
  2001年   4018篇
  2000年   3206篇
  1999年   2565篇
  1998年   1625篇
  1997年   1339篇
  1996年   1231篇
  1995年   1064篇
  1994年   863篇
  1993年   539篇
  1992年   433篇
  1991年   310篇
  1990年   255篇
  1989年   214篇
  1988年   149篇
  1987年   98篇
  1986年   90篇
  1985年   39篇
  1984年   37篇
  1983年   24篇
  1982年   31篇
  1981年   41篇
  1980年   41篇
  1979年   25篇
  1977年   9篇
  1976年   10篇
  1959年   10篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Multimedia Tools and Applications - In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the...  相似文献   
12.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
13.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
14.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
15.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
16.
Because of its ability to change optical absorption dynamically by applied electric field, nickel oxide (NiO) is a promising anodic material in smart windows, which can improve energy conversion efficiency in construction buildings. Although many works have achieved high electrochromic performance with different method. The underlying mechanism is still not fully investigated. In this article, we prepared the NiO films with large specific surface area and high stability by electron beam evaporation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to figure out the surface morphology and composition of as-deposited films. Afterwards, the electrochemical properties and optical performance of the prepared NiO films were investigated. On this basis, the origin of surface charge was fully analyzed by cyclic voltammetry and diffusion coefficient test. These experimental and theoretical results firmly confirm that both the surface reaction and capacitive effect bring about the excellent EC performance in NiO films. These results not only provide clear evidence about electrochemical kinetics in NiO films, but also offer some useful guidelines for the design of EC materials with higher performance and longer stability.  相似文献   
17.
以特拉华大学机械系统实验室所研制的样机模型进行建模,该模型传动机构采用曲柄摇杆机构.传动机构在运转的过程中,翅翼会在气动力和惯性力作用下产生周期性波动,导致电机转速波动增大,影响机构的平稳运行,产生振动和噪声.在仿真试验中引入弹簧元件,可有效降低电机转速波动,利用正交试验设计方法对影响电机转速波动的影响因素进行极差分析,得出弹簧的连接点位置是主要因素,弹簧的刚度系数是次要因素,弹簧原长影响最小.搭建了物理实验平台,验证了仿真结果和正交试验设计方法的正确性.  相似文献   
18.
Yan  Wei 《Virtual Reality》2022,26(2):465-478
Virtual Reality - BRICKxAR is a novel augmented reality (AR) instruction method for construction toys such as LEGO®. With BRICKxAR, physical LEGO construction is guided by virtual bricks....  相似文献   
19.
为了提升大型载货车、专用车用变速箱分离机构分离性能,满足大离合器盘分离需求,设计出一种分离机构.该机构通过机械原理实现放大输入端推力来满足离合器摩擦片分离.该分离机构结构简单、成本低廉,值得推广.  相似文献   
20.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号