In the last decades, the necessity to make production more versatile and flexible has forced assembly line production systems to change from fixed assembly lines to mixed model assembly lines, where the output products are variations of the same base product and only differ in specific customizable attributes. Such assembly lines allow reduced setup time, since products can be jointly manufactured in intermixed sequences (Boysen, Flieder, Scholl. Jena Research Papers in Business and Economics, Friedrich-Schiller-Universitat Jena, 1;1–11, 2007a; Boysen, Flieder, Scholl. Jena Research Papers in Business and Economics, Friedrich-Schiller-Universitat Jena, 2;1–33, 2007b). Unfortunately, the installation of customization options typically leads to variations in process times, and when the cycle is exceeded within a certain station, an overload is created, forcing other stations to wait and idle. Normally, process time variation in an un-paced line are absorbed by buffers, but in some industrial application the buffer dimensions are critical not only for the reduction of work in progress but also in reducing other constrains (space, technology, model dimensions, etc.). The problem of balancing mixed model assembly lines (MALBP), in the long term, and that of sequencing mixed model assembly lines (MMS), in the short term (Merengo, Nava, Pozetti. Int J Prod Res 37:2835–2860, 1999), are the two major problems to solve. The object of this paper is to illustrate an innovative balancing–sequencing step-by-step procedure that aims to optimize the assembly line performance and at the same time contain the buffer dimensions in function of different market demand and production mix. The model is validated using a simulation software and an industrial application is presented. 相似文献
Mesoporous glasses – the leaching products of phase‐separated alkali borosilicate glasses – are widely used in fundamental research and practical applications. In this work, the option to control their internal mesopore structure by varying the conditions of microphase separation has been studied. Structure and transport characterization of a family of nanoporous glasses obtained under different conditions has been performed using a combination of several experimental techniques, including gas adsorption, nuclear magnetic resonance cryoporometry and diffusometry. 相似文献
Tropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions. Applying differential scanning calorimetry (DSC), molecular dynamics (MD), co-sedimentation, trypsin digestion, and in vitro motility assay, we characterized the properties of Tpm molecules with these substitutions. The A134L mutation prevented proteolysis of Tpm molecule by trypsin, and both substitutions increased the thermal stability of Tpm and its bending stiffness estimated from MD simulation. None of these mutations affected the primary binding of Tpm to F-actin; still, both of them increased the thermal stability of the actin-Tpm complex and maximal sliding velocity of regulated thin filaments in vitro at a saturating Ca2+ concentration. However, the mutations differently affected the Ca2+ sensitivity of the sliding velocity and pulling force produced by myosin heads. The data suggest that both regions of instability are essential for correct regulation and fine-tuning of Ca2+-dependent interaction of myosin heads with F-actin. 相似文献
Three new heterogemini sulfobetaines and their chloride salts were synthesised. The interfacial activities of the obtained chlorides in aqueous solution were studied by equilibrium and dynamic surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule and standard Gibbs energy of adsorption as well as micelle lifetime and diffusion coefficient were determined. The adsorption properties and micelle lifetime of these compounds significantly depend on the length of alkyl chain. The critical micelle concentration decreases with increasing chain length of the compounds considered. The values of the diffusion coefficient of N‐alkyl‐N‐methyl‐N‐(3‐sulfopropyl)‐6‐(N‐alkyl‐N‐methylamino)hexylammonium chloride tend to decrease as the concentration is increased. 相似文献
The increasing emergence of multidrug-resistant microorganisms is one of the greatest challenges in the clinical management of infectious disease. New antimicrobial agents are therefore urgently required, particularly in the treatment of chronic and recurrent infections often associated with antibiotic-resistant pathogens, as in the case of cystic fibrosis (CF) patients. This study reports the antibacterial activity of a series of monocyclic β-lactams with an alkylidenecarboxyl chain or electron-withdrawing groups such as 4-OAc, 4-SAc, and 4-SO(2)Ph at the C4 position of the ring. N-Unsubstituted and N-thiomethyl derivatives were compared. A total of 33 azetidinones were tested for their activity against Gram-positive and Gram-negative bacterial clinical isolates. The combination of an N-thiomethyl group and a benzyl ester on the 4-alkylidene side chain were found to increase the potency against Gram-positive bacteria. The N-thiomethyl group clearly elevated the activity of 4-acetoxyazetidinones relative to the corresponding NH derivatives. The most active compounds showed minimum inhibitory concentration (MIC) values of 4 and 8 mg L(-1) against methicillin-resistant Staphylococcus aureus isolated from pediatric patients with CF. 相似文献
We describe a method of fabrication of nanoporous flexible probes which work as artificial proboscises. The challenge of making probes with fast absorption rates and good retention capacity was addressed theoretically and experimentally. This work shows that the probe should possess two levels of pore hierarchy: nanopores are needed to enhance the capillary action and micrometer pores are required to speed up fluid transport. The model of controlled fluid absorption was verified in experiments. We also demonstrated that the artificial proboscises can be remotely controlled by electric or magnetic fields. Using an artificial proboscis, one can approach a drop of hazardous liquid, absorb it and safely deliver it to an analytical device. With these materials, the paradigm of a stationary microfluidic platform can be shifted to the flexible structures that would allow one to pack multiple microfluidic sensors into a single fiber. 相似文献
Electronic colon cleansing (ECC) aims to segment the colon lumen from a patient abdominal image acquired using an oral contrast agent for colonic material tagging, so that a virtual colon model can be constructed. Virtual colonoscopy (VC) provides fly-through navigation within the colon model, looking for polyps on the inner surface in a manner analogous to that of fiber optic colonoscopy. We have built an ECC pipeline for a commercial VC navigation system. In this paper, we present an improved ECC method. It is based on a partial-volume (PV) image-segmentation framework, which is derived using the well-established statistical expectation-maximization algorithm. The presented ECC method was evaluated by both visual inspection and computer-aided detection of polyps (CADpolyp) within the cleansed colon lumens obtained using 20 patient datasets. Compared to our previous ECC pipeline, which does not sufficiently consider the PV effect, the method presented in this paper demonstrates improved polyp detection by both visual judgment and CADpolyp measure. 相似文献
Solvent‐free protocols for Miyaura borylation and the one‐pot, two‐step homocoupling of aryl halides are reported for the first time. Bis(dibenzylideneacetone)palladium(0) [Pd(dba)2] is an optimal source of palladium for Miyaura borylation, while for one‐pot two‐step homocoupling palladium(II) acetate [Pd(OAc)2] gives highest yields. Aryl bromides are coupled most efficiently using the DPEphos ligand. Chlorides are coupled using XPhos. The developed protocols are robust, versatile and easily reproducible on a large scale.
Usually the methodologies used to analyse the feasibility of water reuse projects are focused on the internal costs. The aim of this paper is to show a methodology to assess the feasibility of a water reuse project taking into account not just the internal impact, but also the external impact (environmental and social, for example) and the opportunity cost derived from the project. Internal benefit is obtained from the difference between internal income and internal costs. Internal income is obtained by multiplying the selling price of reclaimed water and the volume obtained. Internal costs are made up of the sum of investment costs, operating costs, financial costs and taxes. While some of these factors identified can be calculated directly in terms of money, biophysical and social aspects demand the definition of units of measurement. In order to homogenize results, an annual reference is proposed. A monetary value can be obtained from the calculation of each impact. However, there are a series of externalities for which no explicit market exists. In these cases economic valuation methods are used, based on hypothetical scenarios or patterns observed in related markets. 相似文献