首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   4篇
石油天然气   1篇
无线电   1篇
一般工业技术   7篇
冶金工业   3篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1988年   1篇
  1984年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
12.
The ability of a replication initiator protein to promote intermolecular pairing of two replication origins resulting in the turning off of the origin pair has been called handcuffing. We have endeavored to test the validity of the handcuffing model by isolating two mutant forms of the tau initiator protein of R6K that elicit high copy number phenotype. We have discovered that one mutant called tau 113 yielded a 3.6-fold increase in copy number of a gamma replicon with a concomitant impairment of its ability to loop DNA and to pair binding sites (iterons) in comparison with normal tau, thus supporting the handcuffing model. A second mutant called tau 108, on the other hand, elicited a 3-fold increase in copy number without showing any measurable loss in its ability to loop and pair gamma iterons. Both mutant forms of the wild-type tau protein showed no detectable differences in their affinity of binding to the gamma iterons. Thus, the phenotype of tau 108 is consistent with the proposition that copy number control involves macromolecular interactions other than cooperativity at a distance of tau or interaction of tau with the primary binding sites at gamma. Taken together, the results are consistent with the notion that tau-mediated handcuffing is a mechanism, but not the only mechanism, of copy control in R6K. Interaction of tau with host proteins is likely to provide additional facets of the copy control mechanism.  相似文献   
13.
Hybrid polymer networks based on unsaturated polyester (UPE) and epoxidized soybean oil acrylate (ESOA) were synthesized by reactive blending through free radical addition polymerization reaction. ESOA was prepared by acrylation of epoxidized soybean oil (ESO). The physical, mechanical, thermal and electrical properties of the cured blends were compared with the neat resin. ESOA resin bearing reactive functional groups showed good miscibility and compatibility with the UPE resin. The co‐cured resin showed substantial upgrading in the toughness, impact resistance, thermal properties, and downgrading brittleness up to the addition of 20 wt % of ESOA content. The muddled phase structure was corroborated by Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy and proved the formation of excellent hybrid polymer network. An improvement in overall properties has been achieved without seriously affecting any other properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44345.  相似文献   
14.
Bio‐ synthesis of silver nanoparticles (AgNPs) was made by using the aqueous leaf extract of Ardisia solanacea. Rapid formation of AgNPs was observed from silver nitrate upon treatment with the aqueous extract of A. solanacea leaf. The formation and stability of the AgNPs in the colloidal solution were monitored by UV–visible spectrophotometer. The mean particle diameter of AgNPs was calculated from the DLS with an average size ∼4 nm and ∼65 nm. ATR‐FTIR spectroscopy confirmed the presence of alcohols, aldehydes, flavonoids, phenols and nitro compounds in the leaf which act as the stabilizing agent. Antimicrobial activity of the synthesized AgNPs was performed using agar well diffusion and broth dilution method against the Gram‐positive and Gram‐negative bacteria. Further, robust anti‐oxidative potential was evaluated by DPPH assay. The highest antimicrobial activity of synthesized AgNPs was found against Pseudomonas aeruginosa (28.2 ± 0.52 mm) whereas moderate activity was found against Bacillus subtilis (16.1 ± 0.76), Candida kruseii (13.0 ± 1.0), and Trichophyton mentagrophytes (12.6 ± 1.52). Moreover, the potential wound healing activity was observed against the BJ‐5Ta normal fibroblast cell line. Current research revealed that A. solanacea was found to be a suitable source for the green synthesis of silver nanoparticles.Inspec keywords: antibacterial activity, nanoparticles, silver, nanomedicine, wounds, microorganisms, X‐ray diffraction, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopyOther keywords: phyto‐assisted synthesis, biofunctionalised silver nanoparticles, antioxidant antimicrobial wound healing activities, silver nanoparticle biosynthesis, aqueous leaf extract, Ardisia solanacea, silver nitrate, UV–visible spectroscopy, dynamic light scattering, Fourier transform infra‐red spectroscopy, X‐ray diffraction, electron microscopy, attenuated total reflection Fourier transform infra‐red spectroscopy, dilution method, Gram‐positive bacteria, Gram‐negative bacteria, radical scavenging method, Pseudomonas aeruginosa, Trichophyton mentagrophytes, Bacillus subtilis, Candida kruseii, BJ‐5Ta normal fibroblast cell line, SEM, alcohols, aldehydes, flavonoids, phenols, nitro compounds, Ag  相似文献   
15.
In this investigation, the biological synthesis method was adopted to synthesise silver nanoparticles (AgNPs) by using the leaf extracts of Cleistanthus collinus (C. collinus). This plant has traditionally been used to remove the harmful pest from the agriculture field. Leaf extract of C. collinus was used as bioreductant on the precursor solvent of AgNO3. The synthesised AgNPs were characterised by spectroscopic method such as UV–vis spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering and microscopic method by field‐emission scanning electron microscopy analysis. The AgNPs were studied for both antibacterial and antifungal activities and found to exhibit potential antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa. The anticancer activity of AgNPs was screened against A‐431 osteosarcoma cell line by [3‐(4, 5‐dimetheylthiazol‐2)‐2, 5 diphenyl tetrazolium bromide] assay and the IC50 value was found to be 91.05 ± 1.53 μg/ml. This trend of eco‐friendly stable synthesis of AgNPs could prove a better substitute for the chemical methods and offer greater opportunity to use these nanosilvers in agricultural and biomedical sectors.Inspec keywords: bio‐inspired materials, silver, nanoparticles, nanomedicine, antibacterial activity, cancer, biomedical materials, microorganisms, nanofabrication, attenuated total reflection, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, light scattering, scanning electron microscopy, field emission electron microscopy, cellular biophysicsOther keywords: bio‐inspired synthesis, silver nanoparticles, Cleistanthus collinus, antibacterial activity, anticancer activity, leaf extracts, biological synthesis method, bioreductant, precursor solvent, UV‐visible spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, dynamic light scattering, field‐emission scanning electron microscopy, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, A‐431 osteosarcoma cell line, 3‐(4, 5‐dimetheylthiazol‐2)‐2,5 diphenyl tetrazolium bromide assay, eco‐friendly stable synthesis, Ag  相似文献   
16.
The present study reports on biogenic‐synthesised silver nanoparticles (AgNPs) derived by treating Ag ions with an extract of Cassia fistula leaf, a popular Indian medicinal plant found in natural habitation. The progress of biogenic synthesis was monitored time to time using a ultraviolet–visible spectroscopy. The effect of phytochemicals present in C. fistula including flavonoids, tannins, phenolic compounds and alkaloids on the homogeneous growth of AgNPs was investigated by Fourier‐transform infrared spectroscopy. The dynamic light scattering studies have revealed an average size and surface Zeta potential of the NPs as, −39.5 nm and −21.6 mV, respectively. The potential antibacterial and antifungal activities of the AgNPs were evaluated against Bacillus subtilis, Staphylococcus aureus, Candida kruseii and Trichophyton mentagrophytes. Moreover, their strong antioxidant capability was determined by radical scavenging methods (1,1‐diphenyl‐2‐picryl‐hydrazil assay). Furthermore, the AgNPs displayed an effective cytotoxicity against A‐431 skin cancer cell line by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) assay, with the inhibitory concentration (IC50) predicted as, 92.2 ± 1.2 μg/ml. The biogenically derived AgNPs could find immense scope as antimicrobial, antioxidant and anticancer agents apart from their potential use in chemical sensors and translational medicine.Inspec keywords: antibacterial activity, biomedical materials, cancer, cellular biophysics, electrokinetic effects, Fourier transform infrared spectra, light scattering, microorganisms, nanomedicine, nanoparticles, silver, skin, spectrochemical analysis, toxicology, ultraviolet spectra, visible spectraOther keywords: Ag, voltage ‐21.6 mV, size ‐39.5 nm, A‐431 skin cancer cell line, cytotoxicity, 1,1‐diphenyl‐2‐picryl‐hydrazil assay, radical scavenging methods, Trichophyton mentagrophytes, Candida kruseii, Staphylococcus aureus, Bacillus subtilis, surface zeta potential, dynamic light scattering studies, Fourier‐transform infrared spectroscopy, alkaloids, phenolic compounds, tannins, flavonoids, phytochemical effect, ultraviolet‐visible spectroscopy, Cassia fistula leaf extract, biogenic‐synthesised silver nanoparticles, cytotoxic activities, antimicrobial activities, antioxidant activities  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号