首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
化学工业   71篇
轻工业   1篇
一般工业技术   26篇
  2021年   1篇
  2020年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   11篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
51.
The selective removal of 17β-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles.  相似文献   
52.
The aim of this study was to investigate the heavy metal adsorption performance of supermacroporous poly(hydroxyethyl methacrylate) [PHEMA] cryogel. The PHEMA cryogel was produced by cryo‐polymerization. The PHEMA cryogel was characterized by scanning electron microscopy (SEM). The PHEMA cryogel containing 385 μmol Reactive Green HE‐4BD/g were used in the adsorption studies. Adsorption capacity of the PHEMA cryogel for the metal ions, i.e., Cu2+, Cd2+, and Pb2+ were investigated in aqueous media containing different amounts of the ions (5–600 mg/L) and at different pH values (3.2–6.9). The maximum adsorption capacities of the PHEMA cryogel were 11.6 mg/g (56 μmol/g) for Pb2+, 24.5 mg/g (385 μmol/g) for Cu2+ and 29.1 mg/g (256 μmol/g) for Cd2+. The competitive adsorption capacities were 10.9 mg/g (52 μmol/g) for Pb2+, 22.1 mg/g for Cd2+ (196 μmol/g) and 23.2 mg/g (365 μmol/g) for Cu2+. The PHEMA/Reactive Green HE‐4BD cryogel exhibited the following metal ion affinity sequence on molar basis: Cu2+ > Cd2+ > Pb2+. The PHEMA/Reactive Green HE‐4BD cryogel can be easily regenerated by 50 mM EDTA with higher effectiveness. These features make the PHEMA/Reactive Green HE‐4BD cryogel a potential adsorbent for heavy metal removal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
53.
Molecular recognition based Fe3+ imprinted monolith was prepared for selective removal of Fe3+ ions from aqueous solutions. The precomplexation was achieved by the coordination of Fe3+ ions with N‐methacryloyl‐(L )‐cysteine methyl ester (MAC) to form the complex monomer (MAC‐Fe3+). The polymerization step was then carried out in the presence of MAC‐Fe3+ complex and hydroxyethyl methacrylate (HEMA) monomer by bulk polymerization to constitude a Fe3+‐imprinted polymer (PHEMAC‐Fe3+). The specific surface area of PHEMAC‐Fe3+ monolith was found to be 35.2 m2/g, with a swelling ratio of 60.2% after the template was removed from the monolith by 0.1M EDTA solution. The maximum adsorption capacity of PHEMAC‐Fe3+ monolith for Fe3+ ion was 0.76 mg/g. The adsorption behavior of the monolith has been successfully described by the Langmuir isotherm. It was determined that the relative selectivity of PHEMAC‐Fe3+ monolith was 59.7 and 37.0 times greater than that of the nonimprinted PHEMAC monolith as compared with the Cd2+ and Ni2+ ions, respectively. The PHEMAC‐Fe3+ monolith was recovered and reused many times without any significant decrease in its adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
54.
Controlled release technology is a recent technology which has considerable potential in the fields of medicine, pharmacy, and agriculture. Fluoride ion is commonly used in the preventive treatment of decay, and when provided with extra fluoride, children living in regions that lack fluoride benefit from it. For the present study, clinical properties of an intraoral controlled release fluoride delivery system were considered. The preparation of a controlled release membrane system is described. Polyhydroxyethylmethacrylate/polyhydroxybutyrate composite systems were examined as fluoride carriers. Polymeric membranes were prepared by photopolymerization and then characterized. Contact angles and swelling ratios of fluoride‐loaded membranes were determined. The surface morphology of the microporous membranes were examined by using scanning electron microscopy (SEM). In vitro fluoride release studies were carried out in an artificial saliva medium. The amount of released fluoride was determined and the effect of medium pH and temperature on fluoride release was investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 976–981, 2003  相似文献   
55.
Monosize, nonporous poly(glycidyl methacrylate) [poly(GMA)] beads were prepared by dispersion polymerization. Cibacron Blue F3GA was covalently attached onto the poly(GMA) beads for adsorption of recombinant interferon‐α (rHuIFN‐α). Monosize poly(GMA) beads were characterized by scanning electron microscopy. Dye‐carrying beads (1.73 mmol/g) were used in the adsorption–elution studies. The effect of initial concentration of rHuIFN‐α, pH, ionic strength, and temperature on the adsorption efficiency was studied in a batch system. Nonspecific adsorption of rHuIFN‐α on the beads was 0.78 mg/g. Dye attachment significantly increased the rHuIFN‐α adsorption up to 181.7 mg/g. Equilibrium adsorption of rHuIFN‐α onto the dye‐carrying beads increased with increasing temperature. Negative change in free energy (ΔG0 < 0) indicated that the adsorption was a thermodynamically favorable process. ΔS and ΔH values were 146.1 J/mol K and ?37.39 kJ/mol, respectively. Significant amount of the adsorbed rHuIFN‐α (up to 97.2%) was eluted in the elution medium containing 1.0M NaCl in 1 h. To determine the effects of adsorption conditions on possible conformational changes of rHuIFN‐α structure, fluorescence spectrophotometry was employed. We concluded that dye‐affinity beads can be applied for rHuIFN‐α adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these beads are suitable for rHuIFN‐α adsorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 975–981, 2007  相似文献   
56.
Depletion of high abundant proteins like albumin and immunoglobulin G (IgG) can be beneficial in the analysis of serum proteins. For this purpose, Cibacron Blue F3GA and iminodiacetic acid (IDA)-Cu2+ containing poly(glycidyl methacrylate) (PGMA) beads (1.6 µm in diameter) were embedded into the poly(hydroxyethyl methacrylate) (PHEMA) cryogel. The PGMA beads were prepared by dispersion polymerization. The PGMA beads were modified with Cibacron Blue F3GA and iminodiacetic acid (IDA)-Cu2+ for simultaneous albumin and IgG depletion, respectively. The PHEMA cryogel was synthesized by free radical polymerization in the presence of the modified PGMA beads. The PHEMA and PHEMA/PGMA composite cryogels were characterized by swelling measurements and scanning electron microscopy (SEM). Protein depletion studies were carried out in a continuous experimental set-up in a stacked column. Albumin adsorption capacity of the PGMA-Cibacron Blue F3GA beads embedded PHEMA cryogel (PHEMA/PGMA-Cibacron Blue F3GA) was 342 mg/g and IgG adsorption capacity of the PGMA-IDA-Cu2+ beads embedded PHEMA cryogel (PHEMA/PGMA-IDA-Cu2+) was 257 mg/g. The composite cryogels depleted albumin and IgG from human serum with 89.4% and 93.6% efficiency, respectively. High desorption values (over 90% for both modified cryogels) were achieved with 0.05 M phosphate buffer containing1.0 M NaCl.  相似文献   
57.
Novel nanospheres with an average size of 350 nm utilizing N-methacryloyl-(l)-tryptophane methyl ester (MATrp) as a hydrophobic monomer were prepared by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA), (MATrp) conducted in an aqueous dispersion medium. MATrp was synthesized using methacryloyl chloride and (l)-tryptophane methyl ester. Specific surface area of the non-porous nanospheres was found to be 1902.3 m2/g. poly(HEMA–MATrp) nanospheres were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size and size distribution measurements were also performed. Elemental analysis of MATrp for nitrogen was estimated at 1.36 mmol/g nanospheres. Then, poly(HEMA–MATrp) nanospheres were used in the adsorption of porcine pancreas lipase in a batch system. Using an optimized adsorption protocol, a very high loading of 558 mg enzyme/g nanospheres was obtained. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The Km value for immobilized lipase (16.26 mM) was higher than that of free enzyme (10.34 mM). It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption amount or enzyme activity. These findings show considerable promise for this material as an adsorption matrix in industrial processes.  相似文献   
58.
We have proposed novel surface-imprinted beads for selective separation of cytochrome c (cyt c) by N-methacryloyl-(L)-histidine-copper(II) [MAH-Cu(II)] as a new metal-chelating monomer via metal coordination interactions and histidine template. We have combined molecular imprinting with the ability of histidine to chelate metal ions to create ligand exchange beads suitable for the binding of cyt c (surface histidine exposed protein). The histidine imprinted beads were produced by suspension polymerization of MAH-Cu(II)-L-histidine and ethylene glycol dimethacrylate. After polymerization, the template (L-histidine) was removed from the beads using methanolic KOH, thus getting histidine imprinted metal-chelate beads. L-Histidine imprinted metal-chelate beads can be used several times without considerable loss of cyt c adsorption capacity. The association constant (Ka) for the specific interaction between the template imprinted polymer and the template (L-histidine) itself were determined by Scatchard plots using L-histidine imprinted beads and found as 58,300 M(-1). Finally, we have used these histidine imprinted beads for cyt c and ribonuclease A (surface histidine exposed proteins) and enantiometric separation of D- and L-histidine by FPLC.  相似文献   
59.
Reactive Green HE 4BD carrying polyamide hollow fibers were investigated as dye-affinity adsorbents for removal of chlorophenols (i.e., phenol, o-chlorophenol, p-chlorophenol and 2,4,6-trichlorophenol). Adsorption rates of chlorophenols were very high. Equilibrium was achieved in about 30 min. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. Results suggest that chemisorption process could be the rate-limiting step in the adsorption process. The maximum adsorption values of chlorophenols onto the Reactive Green HE 4BD carrying hollow fibers were 145.9 micromol/g for phenol, 179.2 micromol/g for 2,4,6-trichlorophenol, 194.5 micromol/g for p-chlorophenol and 202.8 micromol/g for o-chlorophenol. The affinity order was as follows: o-chlorophenol>p-chlorophenol>2,4,6-trichlorophenol>phenol. The adsorption capacity of chlorophenols decreased with increasing pH. Desorption of chlorophenols was achieved using methanol solution (30%, v/v). The Reactive Green HE 4BD-carrying hollow fibers are suitable for repeated use for more than 10 cycles without noticeable loss of adsorption capacity.  相似文献   
60.
Hydrophobic interaction chromatography (HIC) is increasingly used for protein purification, separation and other biochemical applications. The aim of this study was to prepare hydrophobic microbeads and to investigate their recombinant human interferon-α (rHuIFN-α) adsorption capability. For this purpose, we had synthesized functional monomer, N-methacryloyl-l-phenylalanine (MAPA), to provide a hydrophobic functionality to the adsorbent. The poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-phenylalanine) [poly(HEMA–MAPA)] microbeads were prepared by suspension copolymerization. microbeads were characterized using FTIR, swelling behavior, and SEM micrographs. Equilibrium swelling ratio of poly(HEMA–MAPA) and poly(HEMA) microbeads were 53.3% and 69.3%, respectively. The specific surface area and average pore diameters determined by BET apparatus were 17.4 m2/g and 47.3 Å for poly(HEMA) microbeads and 18.7 m2/g and 49.8 Å for poly(HEMA–MAPA) microbeads. Adsorption experiments were performed under different conditions. Maximum rHuIFN-α adsorption capacity was found to be 137.6 ± 6.7 mg/g by using poly(HEMA–MAPA) microbeads with a size range of 150–250 μm and containing 327 μmol MAPA/g microbeads. Compared with poly(HEMA–MAPA) microbeads, nonspecific rHuIFN-α adsorption onto plain poly(HEMA) microbeads was very low, about 4.2 ± 2.3 mg/g. To determine the effects of adsorption conditions on possible conformational changes of rHuIFN-α structure, fluorescence spectrophotometry was employed. Repeated adsorption–elution processes showed that these microbeads are suitable for repeatable rHuIFN-α adsorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号