首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
化学工业   71篇
轻工业   1篇
一般工业技术   26篇
  2021年   1篇
  2020年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   11篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
排序方式: 共有98条查询结果,搜索用时 0 毫秒
71.
Dye‐affinity adsorption has been used increasingly for heavy metal removal. Synthetic hollow fibers have advantages as support matrices in comparison to conventional bead supports because they are not compressible and they eliminate internal diffusion limitations. The goal of this study was to investigate in detail the performance of hollow fibers composed of modified polyamide to which Cibacron Blue F3GA was attached for the removal of heavy metal ions. The Cibacron Blue F3GA loading was 1.2 mmol/g. The internal matrix was characterized by scanning electron microscopy. No significant changes in the hollow fiber cross‐section or outer layer morphology were observed after dye modification. The effect of the initial concentration of heavy metal ions and medium pH on the adsorption efficiency were studied in a batch reactor. The adsorption capacity of the hollow fibers for the selected metal ions [i.e., Cu(II), Zn(II) and Ni(II)] were investigated in aqueous media with different amounts of these ions (10–400 ppm) and at different pH values (3.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐attached hollow fibers were 246.2 mg/g for Cu(II), 133.6 mg/g for Zn(II), and 332.7 mg/g for Ni(II). Furthermore, a Langmuir expression was calculated to extend the adsorption equilibrium. Nitric acid (0.1M) was chosen as the desorption solution. High desorption ratios (up to 97%) were observed in all cases. Consecutive adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3089–3098, 2002; DOI 10.1002/app.2338  相似文献   
72.
Smart polymers with fast response to slight changes show high practicability in separation and removal applications, such as water and wastewater treatment. Molecular imprinted polymers (MIPs) are designed to possess specific binding sites enabling the recognition of the target analytes. In this article, the newly synthesized smart adsorbents were used for the selective removal of nickel [Ni(II)] ions from aqueous solutions, which have dual (pH and temperature) memory for the recognition of Ni(II) ions due to the self-assembled recognition sites in MIP structure. The Ni(II)-MIP smart cryogels were prepared by cryopolymerization of N-isopropylacrylamide (NIPAm) and N-methacryloyl-l -histidine (MAH) monomers to incorporate their smart features for removal of Ni(II) ions in a selective and temperature-modulated way. The maximum binding capacity of Ni(II) ions onto MIP smart cryogel was determined at pH 6 as 414 μg g−1 at 20°C and only 104.5 μg g−1 at 40°C, respectively. The adsorption reached an equilibrium within 30 min, while 85% of the bound amount of Ni(II) ions was achieved in only 15 min. This unique MIP cryogel as a smart and selective adsorbent was able to remove Ni(II) ions immediately by a significant temperature and pH change as an alternative application for water and wastewater treatment.  相似文献   
73.
In this study, selective separation and preconcentration of phosphate ions on the phosphate-imprinted chitosan-succinate beads have investigated. Chitosan-succinate, phosphate, epichlorohydrin were used as the complexing monomer, template and crosslinking agent, respectively. In the first step, chitosan was modified with succinic anhydrides and complex formation occurred between carboxylic acid functional groups and iron(III) ions. Secondly, Fe(III)-chitosan-succinate particles were reacted with phosphate ions. Afterwards, particles were crosslinked with epichlorohydrin and the template (phosphate ions) was removed using 1M KOH solution. Selective cavity for the phosphate ion was obtained in the phosphate-imprinted metal-chelate polymer. These phosphate-imprinted metal-chelate polymer was used in the adsorption-desorption process. The adsorption process was fast and equilibrium was reached around 30 min. The adsorption behaviour of this system was described approximately by the Langmuir equation. Percent extraction, distribution ratio and selectivity coefficients of phosphate and other ions using non-imprinted and phosphate-imprinted polymer were also determined and comparison of these data was reported.  相似文献   
74.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   
75.
Metal chelating properties of Cibacron Blue F3GA‐derived poly(EGDMA‐HEMA) microbeads have been studied. Poly(EGDMA‐HEMA) microbeads were prepared by suspension copolymerization of ethylene glycol dimethacrylate (EGDMA) and hydroxy‐ethyl methacrylate (HEMA) by using poly(vinyl alcohol), benzoyl peroxide, and toluene as the stabilizer, the initiator, and the pore‐former, respectively. Cibacron Blue F3GA was covalently attached to the microbeads via the nucleophilic substitution reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA, under alkaline conditions. Microbeads (150–200 μm in diameter) with a swelling ratio of 55%, and carrying 16.5 μmol Cibacron Blue F3GA/g polymer were used in the adsorption/desorption studies. Adsorption capacity of the microbeads for the selected metal ions, i.e., Cu(II), Zn(II), Cd(II), Fe(III), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–200 ppm) and at different pH values (2.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐derived microbeads were 0.19 mmol/g for Cu(II), 0.34 mmol/g for Zn(II), 0.40 mmol/g for Cd(II), 0.91 mmol/g for Fe(III), and 1.05 mmol/g for Pb(II). Desorption of metal ions were studied by using 0.1 M HNO3. High desorption ratios (up to 97%) were observed in all cases. Repeated adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1397–1403, 1999  相似文献   
76.
Novel magnetic nanoparticles with an average size of 350–400 nm with N‐methacryloyl‐(L )‐phenylalanine (MAPA) as a hydrophobic monomer were prepared by the surfactant‐free emulsion polymerization of 2‐hydroxyethyl methacrylate, MAPA, and magnetite in an aqueous dispersion medium. MAPA was synthesized from methacryloyl chloride and L ‐phenylalanine methyl ester. The specific surface area of the nonporous magnetic nanoparticles was found to be 580 m2/g. Magnetic poly[2‐hydroxyethyl methacrylate–N‐methacryloyl‐(L )‐phenylalanine] nanoparticles were characterized by Fourier transform infrared spectroscopy, electron spin resonance, atomic force microscopy, and transmission electron microscopy. Elemental analysis of MAPA for nitrogen was estimated as 4.3 × 10?3 mmol/g of nanoparticles. Then, magnetic nano‐poly[2‐hydroxyethyl methacrylate–N‐methacryloyl‐(L )‐phenylalanine] nanoparticles were used in the adsorption of Bacillus licheniformis α‐amylase in a batch system. With an optimized adsorption protocol, a very high loading of 705 mg of enzyme/g nanoparticles was obtained. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The inverse of enzyme affinity for free amylase (181.82 mg/mL) was higher than that for immobilized enzyme (81.97 mg/mL). Storage stability was found to increase with adsorption. It was observed that the enzyme could be repeatedly adsorbed and desorbed without a significant loss in the adsorption amount or enzyme activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
77.
In this study, surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensors were prepared for the detection of amoxicillin from the commercial and local chicken eggs by using molecular imprinting technique. Amoxicillin imprinted poly(hydroxyethyl methacrylate-methacrylic acid) polymeric film was synthesized onto the surface of the SPR and QCM chips by ultra violet polymerization to determine lower concentrations of amoxicillin. Ellipsometry, contact angle analysis, and atomic force microscopy measurements were used for the surface morphology of the polymeric film layer. The ellipsometric thickness of AMOX imprinted and nonimprinted SPR and QCM chip surfaces were measured as 35 ± 0.9 nm, 32.89 ± 1.9 nm, 30 ± 0.6 nm, and 28 ± 0.22 nm, respectively. Contact angles of bare gold surfaces, AMOX imprinted SPR and QCM chip surfaces were measured to be as 82.3° ± 0.15, 79.2° ± 0.14, 75.01° ± 1.07, and 69.11° ± 0.89, respectively. The range of linearity was measured as 0.1 to 10 ng/mL for amoxicillin imprinted SPR and QCM sensors. The maximum residue limit of AMOX in eggs is at 10 µg/kg in accordance with the “Positive List System for Agricultural Chemical Residues in Foods.” The response time for the test, including adsorption, desorption, and regeneration, was approximately 45 min. The limit of detections for SPR and QCM sensors were found to be 0.0005 and 0.0023 ng/mL, respectively. The reusabilities of amoxicillin imprinted SPR and QCM sensors were observed by the equilibration-binding-regeneration. Validation studies of the AMOX imprinted SPR and QCM sensors were performed by liquid chromatography-tandem mass spectrometry.  相似文献   
78.
Congo Red-modified poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. Poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Congo Red was covalently incorporated into the poly(EGDMA–HEMA) microbeads via condensation reactions between the aromatic amine groups of the dyes and the hydroxyl groups of the HEMA, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of attached Congo Red (between 2.5 and 14.6 μmol/g). The nonspecific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. High adsorption rates were observed at the beginning, and the adsorption equilibrium was then gradually achieved in about 30–60 min. Much higher bilirubin adsorption values, up to 11.7 mg/g, were obtained with the Congo Red-modified microbeads especially at 37°C. The numbers (as μmol) of bilirubin molecules to albumin molecules adsorbed on the sorbent microbeads were in the range of 15–20, which showed that bilirubin molecules were preferentially adsorbed to the Congo Red-modified microbeads. Bilirubin adsorption increased with increasing temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:373–380, 1998  相似文献   
79.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
80.
Soybean lectin was purified from seeds of Glycine max L.Merrill SA88. Poly(hydroxypropyl methacrylate‐glycidyl methacrylate) [poly(HPMA‐GMA)] beads were used as an affinity matrix and N‐acetyl‐D ‐galactosamine (GalNAc) was used as an affinity ligand. Soybean lectin adsorption with GalNAc attached poly(HPMA‐GMA) beads from soybean lectin solution (in phosphate buffered saline) was 5.0 mg/g. Maximum adsorption capacity for soybean lectin from the soy flour extract was 26.0 mg/g. Elution of soybean lectin from adsorbent was accomplished by 0.5M galactose solution. Purity of soybean lectin was determined by SDS‐PAGE. It was observed that soybean lectin could be repeatedly adsorbed and desorbed with GalNAc‐attached poly(HPMA‐GMA) beads. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号