In this paper, the graphene was synthesized using biocompatible cellulosic component from onions. Onion epidermal cells were chosen as raw material. During heating at high temperature, the bonding among atoms in material was rearranged and forms two-dimensional hexagonal carbon layer (graphene). The characterization of synthesized graphene was done by x-ray diffractometer, Raman spectrometer and field emission scanning electron microscopy, respectively. An attempt has been taken to form the capacitors with two different current collector electrodes, anticipating the performance of the supercapacitors. The observed capacitance values as-obtained for Al and Au current collector were 1.3 μF and 6.08 μF, respectively. However, when thermally exfoliated graphene was used as an electrode on Al and Au current collector, the capacitance value was drastically increased and found to be 1.6 and 41.25 μF, respectively. 相似文献
Tool condition monitoring by machine vision approach has been gaining popularity day by day since it is a low cost and flexible method. In this paper, a tool condition monitoring technique by analysing turned surface images has been presented. The aim of this work is to apply an image texture analysis technique on turned surface images for quantitative assessment of cutting tool flank wear, progressively. A novel method by the concept of Voronoi tessellation has been applied in this study to analyse the surface texture of machined surface after the creation of Voronoi diagram. Two texture features, namely, number of polygons with zero cross moment and total void area of Voronoi diagram of machined surface images have been extracted. A correlation study between measured flank wear and extracted texture features has been done for depicting the tool flank wear. It has been found that number of polygons with zero cross moment has better linear relationship with tool flank wear than that of total void area. 相似文献
In this work, one step process of synthesis of silver nanoparticles (Agnp) embedded in insitu formed calcium alginate (CA) beads is stated. CA, formed from the reaction between sodium alginate and calcium hydroxide, acts as reducing and stabilizing agent as well as support for nanoparticles. The reaction mechanism for the formation and stabilization of Agnp is proposed where the vicinal dihydroxy groups of alginate are assumed to act as the reducing agent for Ag+ to Ag°. Transmission electron microscopy (TEM), x‐ray diffraction (XRD), UV‐vis spectroscopy, field emission scanning electron microscopy (FESEM), and atomic absorption spectroscopy (AAS) were used to characterize the Agnp. The formation of spherical nanoparticles with average size range of 4‐5 nm was confirmed by TEM. Catalytic activity of this nano silver‐calcium alginate (Agnp‐CA) composite was evaluated in the reduction of p‐nitrophenol. Concentrations of sodium alginate, calcium hydroxide, and AgNO3 are found to be the parameters that critically affect the synthesis of Agnp. The efficacy of the catalyst is expressed on the basis of suitable reaction parameters. Both pseudo‐homogeneous and heterogeneous kinetic models are proposed for the reaction to find the best model and the Eley‐Riedel model is found to fit well with the experimental data. The novelty of this work is that the tandem process of CA bead formation, Agnp formation, and Agnp entrapment in CA have been transformed into a single‐step process. Moreover, elaborations of each step of the ionic mechanisms of Agnp formation and p‐NP reduction with Agnp and the establishment of a heterogeneous kinetic model for the reaction are reported for the first time here. 相似文献
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content. 相似文献
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating. 相似文献
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices. 相似文献
To learn the extent of human exposure to polyfluoroalkyl compounds (PFCs) in a remote fishing population, we measured, in Faroese children and pregnant women, the serum concentrations of nine PFCs, including perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorononanoate (PFNA), by using online solid-phase extraction coupled to isotope dilution high-performance liquid chromatography-tandem mass spectrometry. The serum samples analyzed had been collected between 1993 and 2005 from 103 children 7 years of age, 79 of these children at 14 years of age, and from 12 pregnant women and their children 5 years later. PFOS was detected in all samples analyzed, and both PFOA and PFNA were detected in all but one of the samples. The concentrations found are comparable tothose reported elsewhere. Correlations between paired concentrations were poor. However, PFOS and PFNA concentrations correlated well with the frequency of pilotwhale dinners and with concentrations of mercury and polychlorinated biphenyls. One whale meal every two weeks increased the PFOS concentration in 14-year-olds by about 25% and PFNA by 50%. The high frequency of detection of most PFCs suggests widespread exposure in the Faroe Islands already by the early 1990s, with whale meat being an important source. 相似文献
Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.
Dry tropical forests account for over 1,000,000 km2, and there is still lack of knowledge on their hydrologic processes. The curve number (CN) hydrologic model developed by the Natural Resources Conservation Service (NRCS) is widely applied for runoff determination in various parts of the world, but not so in tropical semiarid regions. This study analyzes the impact of land use changes on the CN model in a tropical semiarid environment, in two catchments of native dry tropical forest and thinned dry tropical forest land use from 2009 to 2012. The CN model was calibrated and validated for the NRCS recommended initial abstraction ratio λ = 0.2, and for λ evaluated from rainfall and runoff data. A reliability analysis was performed using Monte Carlo simulation. Model goodness-of-fit was assessed with statistical criteria. A total of 42 and 40 rainfall-runoff events were analyzed for the native and thinned dry tropical forest, respectively. Characteristic λ values of 0.15 and 0.11 were determined for the two respective catchments. Although CN values were similar for both land uses, CNλ=0.20 = 80 and CNmedian λ = 77, the thinned catchment showed a higher CN model parameters variability. The CN model was more sensitive to variations of CN values than to those of λ. This study showed that no matter the vegetation management in a dry tropical forest environment, modeled runoff is not affected by λ, but rather affected by CN, which represents soil, landuse and management. 相似文献
Accumulating evidence strongly suggests that oxidative stress underlies aging processes. Research provides consistent evidence that calorie restriction (CR) reduces age-related oxidative stress and has anti-inflammatory properties. However, information is lacking on the molecular mechanism that would better define the interrelation of reactive oxygen species and nitrogen species and the pro-inflammatory states of the aging process. In this review, the biochemical and molecular bases of the inflammatory process in the aging process are analyzed to delineate the molecular inflammation hypothesis of aging. The key players involved in the proposed hypothesis are the age-related upregulation of NF-kappa B, IL-1 beta, IL-6, TNFalpha, cyclooxygenase-2, and inducible NO synthase, all of which are attenuated by CR. Furthermore, age-related NF kappa B activation is associated with phosphorylation by I kappa B kinase/NIK and MAPKs, while CR blocked these activation processes. The modulation of these factors provides molecular insights of the anti-inflammatory action of CR in relation to the aging process. Based on available finding and our recent supporting evidence, we prefer to use "molecular inflammation" to emphasize the importance of the molecular reaction mechanisms and their aberrance, predisposing to fully expressed chronic inflammatory phenomena. It was further proposed that CR's major force of the regulation of redox-sensitive inflammation may well be its life-prolonging action. 相似文献