首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   35篇
  国内免费   3篇
电工技术   5篇
化学工业   98篇
金属工艺   26篇
机械仪表   8篇
建筑科学   2篇
能源动力   18篇
轻工业   4篇
石油天然气   1篇
无线电   68篇
一般工业技术   202篇
冶金工业   20篇
原子能技术   4篇
自动化技术   64篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   16篇
  2019年   9篇
  2018年   11篇
  2017年   12篇
  2016年   14篇
  2015年   14篇
  2014年   31篇
  2013年   41篇
  2012年   35篇
  2011年   54篇
  2010年   40篇
  2009年   41篇
  2008年   42篇
  2007年   25篇
  2006年   24篇
  2005年   22篇
  2004年   17篇
  2003年   5篇
  2002年   15篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1976年   2篇
  1967年   1篇
排序方式: 共有520条查询结果,搜索用时 31 毫秒
101.
Electrochemical impedance spectroscopy (EIS), current interrupt (CI) and current mapping (CM) were investigated as in-situ characterisation tools for PEM electrolysers. A 25 cm2 cell with titanium anode and carbon cathode plates were utilised in this study. A commercial MEA consisting of 1 mg IrO2/cm2 on the anode and 0.3 mg Pt/cm2 on the cathode was used. The electrocatalyst was deposited on Nafion® membranes. The electrochemical losses in a PEM electrolyser namely: activation, ohmic and mass transfer losses were identified using EIS and CI and both the advantages and disadvantages of the methods were discussed. The current distribution over the membrane electrode assembly (MEA) at different current densities was measured using the current mapping method. It is also shown that under the given experimental conditions the current density decreases along the serpentine flow field.  相似文献   
102.
Abstract

We have successfully grown non-c-axis-oriented epitaxial ferroelectric SrBi2Ta2O9 (SBT) films with (116) and (103) orientations on Si(100) substrates using epitaxial (110)- and (111)-oriented SrRuO3 (SRO) bottom electrodes, respectively. The SRO orientations have been induced by coating the Si(100) substrates with epitaxial YSZ(100) and MgO(111)/ YSZ(100) buffer layers, respectively. All films were sequentially grown by pulsed laser deposition. Specific in-plane orientations of the epitaxial SBT films were found, which are in turn determined by specific in-plane orientations of the epitaxial SRO bottom electrodes. These include a diagonal rectangle-on-cube epitaxy of SRO(110) on YSZ(100) and a triangle-on-triangle epitaxy of SRO(111) on MgO(111).  相似文献   
103.
The crystallization kinetics and structure changes in a melt-spun Cu50Zr45Ti5 glassy alloy on heating were investigated by X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and differential isothermal calorimetry. The glassy phase in the Cu50Zr45Ti5 alloy was crystallized forming Cu10Zr7 and CuZr2 phases upon thermal annealing. The activation energy for crystallization obtained by the Arrhenius equation was 435 kJ/mol. The crystallization process took place by nucleation and growth mechanism, and an Avrami exponent of about 3.3 may indicate a three-dimensional interface-controlled growth of nuclei with a decreasing nucleation rate.  相似文献   
104.
105.
106.
107.
Fluorescein isothiocyanate (FITC)-encapsulated SiO2 core-shell particles with a nanoscale ZnO finishing layer have been synthesized for the first time as multifunctional “smart” nanostructures. Detailed characterization studies confirmed the formation of an outer ZnO layer on the SiO2–FITC core. These ~200 nm sized particles showed promise toward cell imaging and cellular uptake studies using the bacterium Escherichia coli and Jurkat cancer cells, respectively. The FITC encapsulated ZnO particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells with minimal toxicity to normal primary immune cells (18% and 75% viability remaining, respectively, after exposure to 60 μg/ml) and inhibited the growth of both gram-positive and gram-negative bacteria at concentrations ≥250–500 μg/ml (for Staphylococcus aureus and Escherichia coli, respectively). These results indicate that the novel FITC encapsulated multifunctional particles with nanoscale ZnO surface layer can be used as smart nanostructures for particle tracking, cell imaging, antibacterial treatments and cancer therapy.  相似文献   
108.
Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-β4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.  相似文献   
109.
Fuel cell vehicles powered by hydrogen are particularly attractive and competitive among rapidly developing new energy-driven automobiles. One critical problem for this type of vehicles is the high cost for hydrogen storage due to the lack of efficient and low-pressure hydrogen storage technologies. In the frame of development of hydrogen physisorption-relied materials, attention has mostly been paid to the textural designs of porous materials, including specific surface area, pore volume, and pore size. However, based on the hydrogen physisorption mechanism, hydrogen adsorption energy on a material surface is another key factor with regard to hydrogen uptake capacity. Herein, solid experimental evidences are provided and it is also proven that the chemical states of porous boron nitride (BN) materials remarkably affect their hydrogen adsorption performances. The developed carbon and oxygen co-doped BN microsponges exhibit the hydrogen uptake capacity per specific surface area of 2.5–4.7 times larger than those of undoped BN structures. These results show the importance of chemical state modulations on the future designs of high-performance hydrogen adsorbents based on physisorption approaches.  相似文献   
110.
Ideal materials for modern electronics packaging should be highly thermoconductive. This may be achieved through designing multifunctional polymer composites. Such composites may generally be achieved via effective embedment of functional inorganic fillers into desirable polymeric bodies. Herein, two types of high‐performance 3D h‐BN porous frameworks (3D‐BN), namely, h‐BN nanorod‐assembled networks and nanosheet‐interconnected frameworks, are successfully created via an in situ carbothermal reduction chemical vapor deposition substitution reaction using carbon‐based nanorod‐interconnected networks as templates. These 3D‐BN porous materials with densely interlinked frameworks, excellent mechanical robustness and integrity, highly isotropous and multiple heat transfer paths, enable reliable fabrications of diverse 3D‐BN/polymer porous composites. The composites exhibit combinatorial multifunctional properties, such as excellent mechanical strength, light weight, ultralow coefficient of thermal expansion, highly isotropic thermal conductivities (≈26–51 multiples of pristine polymers), relatively low dielectric constants and super‐low dielectric losses, and high resistance to softening at elevated temperatures. In addition, the regarded 3D‐BN frameworks are easily recycled from their polymer composites, and may be reliably reutilized for multifunctional reuse. Thus, these materials should be valuable for new‐era advanced electronic packaging and related applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号