首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   33篇
  国内免费   3篇
电工技术   5篇
化学工业   97篇
金属工艺   26篇
机械仪表   8篇
建筑科学   2篇
能源动力   18篇
轻工业   4篇
石油天然气   1篇
无线电   68篇
一般工业技术   201篇
冶金工业   15篇
原子能技术   4篇
自动化技术   61篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   16篇
  2019年   9篇
  2018年   11篇
  2017年   12篇
  2016年   14篇
  2015年   14篇
  2014年   31篇
  2013年   41篇
  2012年   35篇
  2011年   54篇
  2010年   40篇
  2009年   41篇
  2008年   41篇
  2007年   24篇
  2006年   23篇
  2005年   22篇
  2004年   17篇
  2003年   5篇
  2002年   15篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1967年   1篇
排序方式: 共有510条查询结果,搜索用时 0 毫秒
81.
Using a single mode 915 MHz applicator, we fabricate novel Cu50Zr45Al5 metallic glass/polyphenylene sulfide (PPS) composites with high relative densities by microwave processing the constituents in a separated H-field with an applied pressure of about 5 MPa. The heating behaviors and structural changes of the composites have been investigated. A good bonding state between metallic glassy and PPS particles is found. The gradient structure is also induced by microwave heating of the composites with a high fraction of PPS phase.  相似文献   
82.
83.
84.
Measurements of the internal geometry of a carbon fiber non-crimp 3D orthogonal woven composite are presented, including: waviness of the yarns, cross sections of the yarns, dimensions of the yarn cross sections, and local fiber volume fraction. The measured waviness of warp and fill yarns are well below 0.1%, which shows that the fabric termed here “non-crimp” has nearly straight in-plane fibers as-produced, and this feature is maintained after going through all steps of fabric handling and composite manufacturing. The variability of dimensions of the yarns is in the range of 4–8% for warp and fill directions, while the variability of the yarn spacing is in the range of 3–4%. These variability parameters are lower than respective ranges of variability of the yarn waviness and the cross-sectional dimensions in typical carbon 2D weave and 3D interlock weave composites, which are also illustrated in this work for comparison.  相似文献   
85.
IA Martínez  D Petrov 《Applied optics》2012,51(22):5522-5526
We suggest and study experimentally a time-sharing protocol for acousto-optical deflectors (AODs) that permits one to map the radial optical trapping force of optical tweezers without using a controllable flux control or an additional beam. Variations of the trapping potential due to modifications of the optical system are easily detected in terms of the force map. The protocol can be used in optical tweezers that already include an AOD without adding new elements in the existing optical system.  相似文献   
86.
87.
Precise patterning of quantum dot (QD) layers is an important prerequisite for fabricating QD light-emitting diode (QLED) displays and other optoelectronic devices. However, conventional patterning methods cannot simultaneously meet the stringent requirements of resolution, throughput, and uniformity of the pattern profile while maintaining a high photoluminescence quantum yield (PLQY) of the patterned QD layers. Here, a specially designed nanocrystal ink is introduced, “photopatternable emissive nanocrystals” (PENs), which satisfies these requirements. Photoacid generators in the PEN inks allow photoresist-free, high-resolution optical patterning of QDs through photochemical reactions and in situ ligand exchange in QD films. Various fluorescence and electroluminescence patterns with a feature size down to ≈1.5 µm are demonstrated using red, green, and blue PEN inks. The patterned QD films maintain ≈75% of original PLQY and the electroluminescence characteristics of the patterned QLEDs are comparable to thopse of non-patterned control devices. The patterning mechanism is elucidated by in-depth investigation of the photochemical transformations of the photoacid generators and changes in the optical properties of the QDs at each patterning step. This advanced patterning method provides a new way for additive manufacturing of integrated optoelectronic devices using colloidal QDs.  相似文献   
88.
This paper presents an approach for determining the optimal cutting condition for milling thin-walled elements with complex shapes. The approach is based on the interaction between the thin-walled detail and its periodic excitation by tooth passing, taking into account the high intermittency of such a process. The influence of the excitation frequency on the amplitude of the detail oscillation during milling was determined by simulation and experiments. It was found that the analytical results agreed with experimental data. The position of the detail when the tooth starts to cut was evaluated through experiments. The influence of this parameter on the processing state is presented herein. The processing stability is investigated and compared with the proposed approach. Thereafter, spectral analyses are conducted to determine the contribution of the vibrating frequencies to the detail behavior during processing.The full text can be downloaded at https://link.springer.com/content/pdf/10.1007%2Fs40436-018-0224-y.pdf  相似文献   
89.
Fluorescein isothiocyanate (FITC)-encapsulated SiO2 core-shell particles with a nanoscale ZnO finishing layer have been synthesized for the first time as multifunctional “smart” nanostructures. Detailed characterization studies confirmed the formation of an outer ZnO layer on the SiO2–FITC core. These ~200 nm sized particles showed promise toward cell imaging and cellular uptake studies using the bacterium Escherichia coli and Jurkat cancer cells, respectively. The FITC encapsulated ZnO particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells with minimal toxicity to normal primary immune cells (18% and 75% viability remaining, respectively, after exposure to 60 μg/ml) and inhibited the growth of both gram-positive and gram-negative bacteria at concentrations ≥250–500 μg/ml (for Staphylococcus aureus and Escherichia coli, respectively). These results indicate that the novel FITC encapsulated multifunctional particles with nanoscale ZnO surface layer can be used as smart nanostructures for particle tracking, cell imaging, antibacterial treatments and cancer therapy.  相似文献   
90.
The current status of research on boron-carbon-nitrogen (B-C-N) and boron nitride (BN) nanotubes is presented. The latest achievements in syntheses, analyses and property measurements of these nanoscale tubular architectures are reviewed. The characteristic features of B-C-N and BN nanotubes, compared with conventional C nanotubes, are paid special attention. In particular, the latest breakthroughs in the chemical vapour deposition synthesis of BN nanotubes and an insight into their unique structures are highlighted. A wide range of potential applications is also envisaged, based on the recent progress, which includes pioneering results in BN nanocable fabrication, gas adsorption, electron transport and field emission measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号