Potassium carbonate-based sorbents are prospective materials for direct air capture (DAC). In the present study, we examined and revealed the influence of the temperature swing adsorption (TSA) cycle conditions on the CO
2 sorption properties of a novel aerogel-based K
2CO
3/ZrO
2 sorbent in a DAC process. It was shown that the humidity and temperature drastically affect the sorption dynamic and sorption capacity of the sorbent. When a temperature at the sorption stage was 29 ℃ and a water vapor pressure in the feed air was 5.2 mbar (1 bar = 10
5 Pa), the composite material demonstrated a stable CO
2 sorption capacity of 3.4% (mass). An increase in sorption temperature leads to a continuous decrease in the CO
2 absorption capacity reaching a value of 0.7% (mass) at
T = 80 ℃. The material showed the retention of a stable CO
2 sorption capacity for many cycles at each temperature in the range. Increasing
PH2O in the inlet air from 5.2 to 6.8 mbar leads to instability of CO
2 sorption capacity which decreases in the course of 3 consecutive TSA cycles from 1.7% to 0.8% (mass) at
T = 29 ℃. A further increase in air humidity only facilitates the deterioration of the CO
2 sorption capacity of the material. A possible explanation for this phenomenon could be the filling of the porous system of the sorbent with solid reaction products and an aqueous solution of potassium salts, which leads to a significant slowdown in the CO
2 diffusion in the composite sorbent grain. To investigate the regeneration step of the TSA cycle
in situ, the macro ATR-FTIR (attenuated total reflection Fourier-transform infrared) spectroscopic imaging was applied for the first time. It was shown that the migration of carbonate-containing species over the surface of sorbent occurs during the thermal regeneration stage of the TSA cycle. The movement of the active component in the porous matrix of the sorbent can affect the sorption characteristics of the composite material. The revealed features make it possible to formulate the requirements and limitations that need to be taken into account for the practical implementation of the DAC process using the K
2CO
3/ZrO
2 composite sorbent.
相似文献