首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8602篇
  免费   797篇
  国内免费   38篇
电工技术   125篇
综合类   39篇
化学工业   2142篇
金属工艺   367篇
机械仪表   518篇
建筑科学   154篇
矿业工程   7篇
能源动力   384篇
轻工业   616篇
水利工程   41篇
石油天然气   10篇
武器工业   1篇
无线电   1605篇
一般工业技术   2108篇
冶金工业   364篇
原子能技术   80篇
自动化技术   876篇
  2024年   15篇
  2023年   121篇
  2022年   200篇
  2021年   303篇
  2020年   235篇
  2019年   266篇
  2018年   308篇
  2017年   374篇
  2016年   400篇
  2015年   331篇
  2014年   436篇
  2013年   612篇
  2012年   627篇
  2011年   776篇
  2010年   546篇
  2009年   531篇
  2008年   473篇
  2007年   378篇
  2006年   345篇
  2005年   272篇
  2004年   199篇
  2003年   222篇
  2002年   213篇
  2001年   159篇
  2000年   155篇
  1999年   121篇
  1998年   172篇
  1997年   110篇
  1996年   104篇
  1995年   72篇
  1994年   39篇
  1993年   42篇
  1992年   37篇
  1991年   30篇
  1990年   29篇
  1989年   40篇
  1988年   18篇
  1987年   19篇
  1986年   17篇
  1985年   14篇
  1984年   12篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1980年   4篇
  1979年   6篇
  1977年   3篇
  1976年   7篇
  1972年   3篇
  1971年   2篇
排序方式: 共有9437条查询结果,搜索用时 15 毫秒
91.
The main purpose of the study was to develop a model using ASPEN and Excel simulation method to establish optimum CO2 separation process utilizing hollow fiber membrane modules to treat exhaust gas from LNG combustion. During the simulation, optimum conditions of each CO2 separation scenario were determined while operating parameters of CO2 separation process were varied. The characteristics of hollow fibers membrane were assigned as 60 GPU of permeability and 25 of selectivity for the simulation. The simulation results illustrated that 4 stage connection of membrane module is required in order to achieve over 99% of CO2 purity and 90% of recovery rate. The resulted optimum design and operation parameters throughout the simulation were also correlated with the experimental data from the actual CO2 separation facility which has a capacity of 1,000 Nm3/day located in the Korea Research Institute of Chemical Technology. Throughout the simulation, the operating parameters of minimum energy consumption were evaluated. Economic analysis of pilot scale of CO2 separation plant was done with the comparison of energy cost of CO2 recovery and equipment cost of the plant based on the simulation model. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   
92.
Styrene‐acrylonitrile copolymer (SAN)/clay nanocomposites were synthesized through an emulsion copolymerization of styrene and acrylonitrile in the presence of sodium montmorillonite, and their physical properties and electroresponsiveness under an applied electric field were characterized. Thermogravimetric analysis (TGA) showed that the thermal stability of the synthesized polymer was sustained. X‐ray diffraction (XRD) analysis confirmed the insertion of SAN into the interlayers of clay, whose separation consequently increased, as compared to those of the pristine clay. Transmission electron microscopy (TEM) was used to observe the suspended state of clay. Dry‐base electrorheological (ER) fluids were prepared by mixing intercalated SAN nanocomposite particles into silicone oil. Typical ER behavior, i.e., enhancement of shear and yield stresses in the presence of an applied electric field, was observed using a rotational rheometer equipped with a high‐voltage generator. A universal yield stress scaling equation was also found to fit our experimental data well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 821–827, 2003  相似文献   
93.
In metal oxide nanofiber fabrication using the electrospinning method, heat treatment is performed at temperatures of 500°C or higher for crystallization and polymer desorption. Therefore, it is difficult to fabricate low-temperature phase metal oxides that crystallize at low temperatures. TiO2, a representative metal oxide often used as photocatalysts, is known to have higher photocatalytic activity in the low-temperature phase (anatase structure) than in the high-temperature phase (rutile structure). Studies on the fabrication of TiO2 anatase nanofibers using conventional electrospinning have reported disadvantages such as the partial expression of rutile structures and low crystallinity. This study developed an anatase TiO2 nanofiber as a high-efficiency catalyst based on the electrospinning method and a residual organic matter cleaning method that employs ultra-violet (UV) light. We fabricated nanofibers using the electrospinning method and implemented TiO2 nanofibers with the anatase structure through heat treatment at 260°C. Residual organics remaining after heat treatment of the fabricated crystalized TiO2 nanofibers were removed by exposing them to UV light, thereby improving photocatalytic efficiency. The photocatalytic efficiency of the fabricated TiO2 nanofibers was confirmed through a methylene blue (MB) decomposition experiment under visible light irradiation. The photocatalytic efficiency (time taken for the concentration of the MB solution to reach 50%) of the UV-treated TiO2 nanofibers was approximately six times higher than of P25 and the heat-treated nanofibers.  相似文献   
94.
To overcome the plasticization effect in polyimide membranes, many researchers have proposed crosslinking method. This can reduce an inter-segmental mobility by tightening and rigidifying the polymer chains. However, it is difficult to modify the whole polymer chains throughout the membrane because the reaction can be hindered by the diffusion rate of the crosslinker. In particular, it is hard for bulky crosslinker to penetrate a dense membrane with a small d-spacing. This study investigated the effect of crosslinking a dense Matrimid membrane with p-phenylenediamine (p-PDA) via two different crosslinking methods (i.e., methanol-swelling crosslinking process [M-SCP] and liquid-phase crosslinking process [L-PCP]). Most of the crosslinking reaction in M-SCP occurs on the membrane surface due to difficulty in penetration of the bulky p-PDA into the Matrimid dense membrane. In contrast, the L-PCP allows uniform crosslinking across the membrane. The membranes crosslinked using L-PCP showed excellent chemical resistance. Furthermore, the plasticization phenomenon was not observed in the membranes crosslinked using L-PCP with p-PDA more than 15%. Meanwhile, the membrane crosslinked using M-SCP exhibited poor plasticization and chemical resistance properties. These results showed that the L-PCP method can be more effective for the crosslinking of dense membrane to deliver both high plasticization and chemical resistance.  相似文献   
95.
In this study, a series of thermoresponsive cross-linked copolymer poly [N-isopropylacrylamide(NIPAm)-co-N-isopropylmethacrylamide(NIPMAm)] (P-M series samples: P-M-0, 10, 20, 30, 40, where numbers are co-monomer contents) hydrogels were prepared by free radical polymerization using the main monomer N-isopropylacrylamide (NIPAm), co-monomer N-isopropylmethacrylamide (NIPMAm), cross-linking agent N, N-methylenebisacrylamide, initiator (ammonium persulfate)/catalyst, and solvent water. In addition, a series of samples [P-G series samples: P-G-0, 10, 20, 30, 40, where numbers are co-solvent glycerol content) were prepared using P-M-40 as components and water/co-solvent glycerol as a mixed solvent. The effects of co-monomer NIPMAm and co-solvent glycerol contents on the lower critical solution temperature (LCST)/freezing temperature and light transmittance as function of temperature of the prepared copolymer gels were investigated. The resulting thermoresponsive polymer gels had LCSTs in the range of 17.9 to 38.7°C and freezing points in the range of 6.3 to −38.5°C. These gels are suitable materials for smart windows that are responsive to various environmental conditions.  相似文献   
96.
Research was conducted on tailored blank welding between mild steel sheet and Zn-coated steel sheet using CO2 laser beam. The materials used in this study were low carbon steel sheets with a thickness of 1.2 mm and Zn-coated steel sheet with the same thickness and 6.3 μm Zn coating. Experiments were conducted by applying the Taguchi method to obtain optimum conditions for the application of this tailored blank laser welding method in practical manufacturing processes. Optical microscopy, XRD, SEM and TEM analysis were performed to observe the microstructures and to determine the structures of welded zone. In addition, mechanical properties were measured by the microhardness test, tensile test and Erichsen test to evaluate the formability of the welded specimen. There was no trapped Zn in the fusion zone, and the phases of this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of the value in substrate metal, and the LDH value was more than 90% of the value in substrate metal.  相似文献   
97.
This paper presents a visual object tracking system which is tolerant to external imaging factors such as illumination, scale, rotation, occlusion and background changes. Specifically, an integration of an online version of total-error-rate minimization based projection network with an observation model of particle filter is proposed to effectively distinguish between the target object and the background. A re-weighting technique is proposed to stabilize the sampling of particle filter for stochastic propagation. For self-adaptation, an automatic updating scheme and extraction of training samples are proposed to adjust to system changes online. Our qualitative and quantitative experiments on 16 public video sequences show convincing performances in terms of tracking accuracy and computational efficiency over competing state-of-the-art algorithms.  相似文献   
98.
This paper presents a timing controller embedded driver (TED) IC with 3.24‐Gbps embedded display port (eDP), which is implemented using a 45‐nm high‐voltage CMOS process for the chip‐on‐glass (COG) TFT‐LCD applications. The proposed TED‐IC employs the input offset calibration scheme, the zero‐adjustable equalizer, and the phase locked loop‐based bang‐bang clock and data recovery to enhance the maximum data rate. Also, the proposed TED‐IC provides efficient power management by supporting advanced link power management feature of eDP standard v1.4. Additionally, the smart charge sharing is proposed to reduce the dynamic power consumption of output buffers. Measured result demonstrates the maximum data rate of 3.24 Gbps from a 1.1 V supply voltage with a 7.9‐inch QXGA 60‐Hz COG‐LCD prototype panel and 44% power saving from the display system.  相似文献   
99.
100.
Uncertainty-based multidisciplinary design optimization (UMDO) has been widely acknowledged as an advanced methodology to address competing objectives and reliable constraints of complex systems by coupling relationship of disciplines involved in the system. UMDO process consists of three parts. Two parts are to define the system with uncertainty and to formulate the design optimization problem. The third part is to quantitatively analyze the uncertainty of the system output considering the uncertainty propagation in the multidiscipline analysis. One of the major issues in the UMDO research is that the uncertainty propagation makes uncertainty analysis difficult in the complex system. The conventional methods are based on the parametric approach could possibly cause the error when the parametric approach has ill-estimated distribution because data is often insufficient or limited. Therefore, it is required to develop a nonparametric approach to directly use data. In this work, the nonparametric approach for uncertainty-based multidisciplinary design optimization considering limited data is proposed. To handle limited data, three processes are also adopted. To verify the performance of the proposed method, mathematical and engineering examples are illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号