首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   55篇
  国内免费   1篇
电工技术   16篇
综合类   13篇
化学工业   201篇
金属工艺   10篇
机械仪表   14篇
建筑科学   47篇
矿业工程   2篇
能源动力   35篇
轻工业   55篇
水利工程   7篇
无线电   63篇
一般工业技术   155篇
冶金工业   17篇
原子能技术   3篇
自动化技术   164篇
  2024年   1篇
  2023年   18篇
  2022年   39篇
  2021年   68篇
  2020年   37篇
  2019年   29篇
  2018年   36篇
  2017年   33篇
  2016年   44篇
  2015年   31篇
  2014年   52篇
  2013年   50篇
  2012年   43篇
  2011年   69篇
  2010年   54篇
  2009年   37篇
  2008年   34篇
  2007年   19篇
  2006年   18篇
  2005年   16篇
  2004年   12篇
  2003年   12篇
  2002年   11篇
  2001年   3篇
  2000年   9篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有802条查询结果,搜索用时 15 毫秒
121.
High-temperature co-electrolysis shows comparable performance to steam electrolysis. Current densities above 1 A cm−2 can be reached between 700 °C and 800 °C. Tailor-made syngas is produced, mainly determined by the reactant ratio. The experimental results are supported by modeling. Durability tests with cathode-supported cells show increased voltage degradation rates during electrolysis compared to fuel cell operation. Nickel depletion is found to be the main cause.  相似文献   
122.
123.
One of the many features needed to support the activities of autonomoussystems is the ability to plan motion. This enables robots to move in theirenvironment securely and to accomplish given tasks. Unfortunately, thecontrol loop comprising sensing, planning, and acting has not yet beenclosed for robots in dynamic environments. One reason involves the longexecution times of the motion planning component. A solution for thisproblem is offered by the use of highly parallel computation. Thus, animportant task is the parallelization of existing motion planning algorithmsfor robots so that they are suitable for highly parallel computation. Inseveral cases, completely new algorithms have to be designed, so that aparallelization is feasible. In this survey, we review recent approaches tomotion planning using parallel computation. As a classification scheme, weuse the structure given by the different approaches to the robotsmotion planning. For each approach, the available parallel processingmethods are discussed. Each approach is assigned a unique class. Finally,for each research work referenced, a list of keywords is given.  相似文献   
124.
A novel flexible hybrid battery–supercapacitor device is proposed consisting of high specific surface area electrodes paired with an electrolyte, which contains a redox species that can exist in more than two oxidation states. The two initially equal half‐cells of the device consist of a reduced graphene oxide hydrogel which encapsulates vanadium ions, synthesized with a single‐step method. During charge, the oxidation state of the vanadium ions changes, resulting in two half‐cells with different potentials which considerably increases the energy density. The achieved maximum capacity of more than 225 mAh g?1 is roughly eight times higher than that of comparable graphene hydrogel supercapacitors without vanadium content, but the potentiostatic charging time is only double. Operated as a supercapacitor, it retains 95% of the initial capacitance over 1000 cycles. As battery, the losses are more significant, retaining around 50% of the initial capacity. However, these losses during battery operation can be almost entirely restored by electric measures. The vanadium ion addition also improves the self‐discharge characteristics of the device. Moreover, the self‐discharge does not permanently damage the hybrid device since both half‐cells initially consist of the same vanadium graphene hydrogel and discharging resets it to initial conditions.  相似文献   
125.
Nanoparticle‐based voluminous 3D networks with low densities are a unique class of materials and are commonly known as aerogels. Due to the high surface‐to‐volume ratio, aerogels and xerogels might be suitable materials for applications in different fields, e.g. photocatalysis, catalysis, or sensing. One major difficulty in the handling of nanoparticle‐based aerogels and xerogels is the defined patterning of these structures on different substrates and surfaces. The automated manufacturing of nanoparticle‐based aerogel‐ or xerogel‐coated electrodes can easily be realized via inkjet printing. The main focus of this work is the implementation of the standard nanoparticle‐based gelation process in a commercial inkjet printing system. By simultaneously printing semiconductor nanoparticles and a destabilization agent, a 3D network on a conducting and transparent surface is obtained. First spectro‐electrochemical measurements are recorded to investigate the charge–carrier mobility within these 3D semiconductor‐based xerogel networks.  相似文献   
126.
Super‐resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super‐resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super‐resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.  相似文献   
127.
Circulation lifetime is a crucial parameter for a successful therapy with nanoparticles. Reduction and alteration of opsonization profiles by surface modification of nanoparticles is the main strategy to achieve this objective. In clinical settings, PEGylation is the most relevant strategy to enhance blood circulation, yet it has drawbacks, including hypersensitivity reactions in some patients treated with PEGylated nanoparticles, which fuel the search for alternative strategies. In this work, lipopolysarcosine derivatives (BA‐pSar, bisalkyl polysarcosine) with precise chain lengths and low polydispersity indices are synthesized, characterized, and incorporated into the bilayer of preformed liposomes via a post insertion technique. Successful incorporation of BA‐pSar can be realized in a clinically relevant liposomal formulation. Furthermore, BA‐pSar provides excellent surface charge shielding potential for charged liposomes and renders their surface neutral. Pharmacokinetic investigations in a zebrafish model show enhanced circulation properties and reduction in macrophage recognition, matching the behavior of PEGylated liposomes. Moreover, complement activation, which is a key factor in hypersensitivity reactions caused by PEGylated liposomes, can be reduced by modifying the surface of liposomes with an acetylated BA‐pSar derivative. Hence, this study presents an alternative surface modification strategy with similar benefits as the established PEGylation of nanoparticles, but with the potential of reducing its drawbacks.  相似文献   
128.
Foamed glass is widely used in the industry as an insulating material. However, its mechanical properties are not well-investigated yet. Foamed glass is produced from glass waste that causes discrepancy in mechanical properties of the final product. This paper shows a way to increase the limit of the load capacity of foamed glass, which is very fragile and sensitive to mechanical and thermal loading conditions. In this paper, three different methods of load application on cellular glass structure (rough contact, resin and flour interfaces) and their influence on failure mechanisms were investigated in detail. The results of numerical analyses, based on finite elements method and compression strength tests using the digital image correlation method, indicate that the overall strength of the material is limited by boundary effects. A careful adjustment of the interface property is the main factor to draw useful conclusions and to extend load limits of cellular glass in engineering applications.  相似文献   
129.
Local drug release in close vicinity of solid tumors is a promising therapeutic approach in cancer therapy. Implantable drug delivery systems can be designed to achieve controlled and sustained drug release. In this study, ultrathin porous membranes of silicon wafer were employed as compatible drug reservoir models. An anticancer model drug, curcumin (CUR), was successfully loaded into porous silicon containers (8.94?±?0.72% w/w), and then, cerium oxide nanocapping was performed on the open pores for drug protection and release rate prolongation. Next, layer-by-layer surface coating of the drug container with anionic (alginate) and cationic (chitosan) polymers rendered pH-responsivity to the device. The drug release profile was studied using reflectometric interference Fourier transform spectroscopy at different pH conditions. It was determined that faster decomposition of the polymeric layers and subsequent CUR release occur in acidic buffer (pH 5.5) compared to a neutral buffer. Various characterization studies, including dynamic light scattering, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, contact angle measurement, ultraviolet–visible spectroscopy, and X-ray powder diffraction revealed that our system has the required physicochemical properties to serve as a novel pH-sensitive drug delivery implant for cancer therapy.  相似文献   
130.
Near‐equilibrium stimulus‐responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far‐less‐well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on‐demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号